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Abstract

In cancer research, high-throughput profiling studies have been extensively conducted, searching 

for genes/SNPs associated with prognosis. Despite seemingly significant differences, different 

subtypes of the same cancer (or different types of cancers) may share common susceptibility 

genes. In this study, we analyze prognosis data on multiple subtypes of the same cancer, but note 

that the proposed approach is directly applicable to the analysis of data on multiple types of 

cancers. We describe the genetic basis of multiple subtypes using the heterogeneity model, which 

allows overlapping but different sets of susceptibility genes/SNPs for different subtypes. An 

accelerated failure time (AFT) model is adopted to describe prognosis. We develop a regularized 

gradient descent approach, which conducts gene-level analysis and identifies genes that contain 

important SNPs associated with prognosis. The proposed approach belongs to the family of 

gradient descent approaches, is intuitively reasonable, and has affordable computational cost. 

Simulation study shows that when prognosis-associated SNPs are clustered in a small number of 

genes, the proposed approach outperforms alternatives with significantly more true positives and 

fewer false positives. We analyze an NHL (non-Hodgkin lymphoma) prognosis study with SNP 

measurements, and identify genes associated with the three major subtypes of NHL, namely 

DLBCL, FL and CLL/SLL. The proposed approach identifies genes different from using 

alternative approaches and has the best prediction performance.
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Introduction

High-throughput profiling studies have been extensively conducted in cancer research, 

searching for SNPs (single nucleotide polymorphisms) and genes that are associated with 
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prognosis. Cancer is a heterogeneous disease, with different subtypes of the same cancer or 

different types of cancers having different prognosis-associated SNPs/genes. On the other 

hand, all cancers share the same characteristics: uncontrolled growth and metastasis. In 

addition, studies have shown that despite their seemingly significant differences, different 

types of cancers or different subtypes may share common susceptibility SNPs/genes. 

Analysis of data on multiple types of cancers and marker identification have been conducted 

in Rhodes et al. [2004], Xu et al. [2007], Ma et al. [2009] and many others. Specific 

examples may include genes such as BRCA1, BRCA2 and HER2, which increase the 

susceptibility to both breast cancer and ovarian cancer. Gene ADH is associated with the 

development of lung cancer and head/neck cancer. SNPs in gene GPC5 increase the risk of 

lung cancer but are protective for multiple sclerosis. In this article, we analyze prognosis 

data on multiple subtypes of NHL (non-Hodgkin lymphoma). In Han et al. [2010a, 2010b], 

Zhang et al. [2010] and others, researchers have shown that different subtypes of NHL share 

common susceptibility genes/SNPs. For example, SNPs in multiple genes (such as gene 

BRCA2, CASP3, IRF1) have similar effects on DLBCL (diffuse large B-cell lymphoma) 

and FL (follicular lymphoma), while other SNPs (for example in genes BCL2, NAT2, 

ALXO12B) have inverse effects on these two subtypes.

In this article, we analyze prognosis data on multiple subtypes of the same cancer. 

Particularly, we are interested in the case where multiple subtypes have possibly overlapping 

but different genetic basis (sets of susceptibility genes/SNPs when marker identification is 

of interest). The proposed approach can directly accommodate the extreme case where 

multiple subtypes have no common susceptibility gene/SNP. In addition, it is applicable to 

the analysis of data on multiple types of cancers. With data on multiple subtypes, most 

published studies analyze each subtype separately and then pool analysis results and search 

for overlap. Such a strategy fits the classic meta-analysis paradigm. With high-throughput 

genomic measurements such as SNPs or gene expressions, data on individual subtypes have 

the “large d, small n” characteristic, with the sample size n much smaller than the number of 

genomic measurements d. Because of the low sample size, susceptibility genes/SNPs 

identified from the analysis of each subtype have unsatisfactory properties, for example, low 

reproducibility. Recent studies have shown that, when multiple datasets (multiple subtypes 

in this study) have overlapping susceptibility SNPs/genes, integrative analysis, which 

analyzes multiple datasets simultaneously, can generate improved analysis results over the 

analysis of individual datasets and meta-analysis [Huang et al. 2011, Ma et al. 2011].

Gradient descent is a family of analysis approaches. Such approaches have been used in 

multiple studies to analyze cancer data with high-throughput genomic measurements [Gui 

and Li 2005, Ma et al. 2010a, 2010b]. Compared with alternatives, they may be preferred 

because of their computational affordability and satisfactory empirical performance. The 

proposed regularized gradient descent approach may advance from the existing approaches 

along the following aspects. It is an integrative analysis approach, conducts simultaneous 

analysis of data on multiple subtypes, and can be more informative than single-dataset and 

meta-analysis approaches. Compared with the existing integrative analysis studies such as 

Huang et al. [2011], it allows different sets of susceptibility genes/SNPs for different 

subtypes and thus can better accommodate the heterogeneity across subtypes. Compared 

with the approach in Ma et al. [2009], the proposed approach can conduct gene-level 
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analysis and identify important genes that contain SNPs associated with prognosis. With 

SNP data, gene-level analysis can complement SNP-level analysis and sometimes be more 

informative. In addition, in this study, we analyze a prognosis study on NHL, which may 

provide more insights into the genetic basis of this deadly disease.

The integrative analysis of data on multiple subtypes of cancer can be challenging. With 

some cancers, the subtype information may be only partially available or even wrong. In 

addition, the definitions of subtypes are still evolving. For NHL subtypes, we refer to Zhang 

et al. [2011] and references therein for relevant discussions. When there are a large number 

of subtypes, the set of subtypes chosen for analysis needs to be jointly determined by the 

scientific question of interest, quality of data, sample size, evidence from epidemiologic 

studies and several other factors. We acknowledge the importance and difficulty of these 

issues. In this study, we focus on the development of a new analysis approach and refer to 

other publications for relevant discussions.

Methods

Integrative analysis under the heterogeneity model

Data and model settings—Consider a cancer prognosis study where subjects can be 

classified into M distinct subtypes. Assume that for each subject, measurements of d SNPs 

are available. Further assume that these SNPs belong to g genes. For SNP j(= 1, . . . , d), 

denote g(j) as its gene membership.

We adopt an accelerated failure time (AFT) model to describe cancer survival. More 

specifically, denote T1, . . . , TM as the logarithms (or other known monotone 

transformations) of failure times, and X1, . . . , XM as the length d SNP measurements. 

Under the AFT model, for subtype m(= 1, . . . , M), Tm = αm + βm′ Xm + εm. Here αm is the 

intercept, βm is the length-d vector of regression coefficients, and ε is the random error with 

an unknown distribution. Denote C1, . . . , CM as the logarithms of random censoring times. 

Under right censoring, we observe {Ym = min(Tm, Cm), δm = I(Tm ≤ Cm), Xm}.

The AFT model has been adopted in multiple high-throughput prognosis studies [Schmid 

and Hothorn 2008, Datta et al. 2007]. Compared with alternative models for example the 

Cox model, it has a much simpler objective function, as shown in the next section, and 

hence significantly lower computational cost. Such a property is particularly desirable for 

high-throughput data. In addition, it directly describes event times, and its regression 

coefficients may have more lucid interpretations than those in alternative models.

Weighted least squares estimation—In the literature, multiple approaches have been 

developed for estimation with the AFT model. Different approaches may have different 

advantages, with no one significantly outperforming the others. With high-throughput data, 

we are especially concerned with computational cost. We adopt the approach in Stute 

[1993], which to the best of our knowledge, has the lowest computational cost.
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Assume nm iid observations  for subtype m(= 1, . . . , M). The 

total sample size is . Denote F̂m as the Kaplan-Meier estimate of Fm, the 

distribution function of Tm. It can be computed as . Here 

 are the ordered . Denote  as the censoring indicator and  as 

the SNP measurements associated with .  are the jumps in the Kaplan-Meier 

estimate and can be computed as  and  for i = 

2, . . . , nm. For subtype m, the weighted least square loss function is defined as 

. Transform  and  as 

 and . Then the overall loss 

function for the M subtypes combined is

with β = (β1, . . . , βM) being the d × M matrix of regression coefficients. The least squares 

form of the loss function makes computation affordable even with high-throughput data.

When data is unbalanced with larger subtypes having more samples, we may normalize Rm 

by nm so that the analysis is not dominated by large subtypes. On the other hand, the 

unweighted loss function gives “more weights” to larger subtypes, which may be of more 

interest. The choice between weighted and unweighted loss functions needs to be made by 

researchers based on the study setup.

Heterogeneity model—As formulated in Liu et al. [2012], two different models, namely 

the homogeneity model and heterogeneity model, can be adopted to describe the genetic 

basis of multiple subtypes. Under the homogeneity model, multiple subtypes share the same 

set of susceptibility SNPs/genes. In contrast, under the heterogeneity model, the sets of 

susceptibility SNPs/genes may differ across subtypes. Because of its simplicity, the 

homogeneity model has been studied more often than the heterogeneity model. However, as 

different subtypes often have significantly different prognosis patterns, the heterogeneity 

model can be more sensible.

To more explicitly describe the data and model settings, heterogeneity model and our 

analysis strategy, consider a hypothetical cancer study with three distinct subtypes and eight 

SNPs representing four genes. Gene 1 is associated with the prognosis of all three subtypes; 

Gene 2 is associated with the first two subtypes but not the third one; Gene 3 is associated 

with the third subtype only; And gene 4 is not associated with any subtype. In Table 1, we 
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show the regression coefficient matrix whose main characteristics reflect the essence of 

integrative analysis under the heterogeneity model. Unimportant genes/SNPs not associated 

with prognosis have no effects and so zero regression coefficients. With regularized 

approaches including the proposed one, marker identification amounts to identifying the 

sparsity structure of models (zero versus nonzero regression coefficients). For an important 

gene/SNP (for example SNP 1_1), its strengths of association with multiple subtypes, which 

are measured with regression coefficients, may be different for different subtypes because of 

the heterogeneity. With SNP data, analysis can be conducted at multiple levels, particularly 

including SNP-level and gene-level. In this study, we focus on gene-level analysis, which 

may complement SNP-level analysis and sometimes be more informative. As the goal is to 

identify important genes that contain prognosis-associated SNPs, within an important gene, 

we do not conduct further selection. Thus, SNPs within the same gene have the “all in or all 

out” property. Such a strategy is different from that for SNP-level analysis approaches.

Marker identification with regularized gradient descent

Gradient descent is a family of estimation approaches. Denote β as the regression coefficient 

to be estimated and G(β, D) as the gradient function estimated at β, where D represents the 

observed data. With gradient descent approaches, we iteratively update the estimate as β ← 

β – Δ × S(G) × G(β, D), where Δ > 0 is a finite or infinitesimal increment, and S(G) is a 

function of the gradient, for example, the selection indicator [Zhang 2007]. Setting S(G) ≡ 1 

leads to the ordinary gradient-directed optimization approach.

With high-throughput data, regularization is needed. Here regularization may serve two 

objectives simultaneously. The first is to obtain a well-defined estimate under the “large d, 

small n” setting. The second is to select a small number of important variables with nonzero 

estimated regression coefficients. The methodological aspect of regularized gradient descent 

has been described in Gui and Li [2005], Friedman and Popescu [2004] and follow up 

studies. The theoretical properties have been investigated in Zhang [2007]. Using the 

terminologies in Zhang [2007], the proposed approach is a discrete threshold gradient 

descent regularization approach.

As with other gradient descent approaches, the proposed approach is defined by an iterative 

algorithm, which proceeds as follows:

1. Initialize the regression coefficient matrix β = 0 component-wise;

2. Compute the d × M matrix of SNP-level gradients, where its (j, m)th component is 

 and  is the jth component of βm. Here all gradients are evaluated at the 

current estimate of β;

3. Compute G, the g × M matrix of gene-level gradients, where its (l, m)th component 

is ;

4. Compute S1, the g × M matrix of across-subtype selection indicators, where its (l, 
m)th component is S1(l, m) = I(G(l, m) ≥ τ1 × maxk=1,...,M G(l, k)). Here 0 ≤ τ1 ≤ 1 

is a threshold regularization parameter;
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5. Compute S2, the g × M matrix of across-gene selection indicators, where its (l, m)th 

component is 

. Here 0 ≤ 

τ2 ≤ 1 is a threshold regularization parameter;

6.
Update , where Δ > 0 is the 

finite increment;

7. Repeat Steps 2-6 until a certain stopping criterion is reached.

The proposed approach shares a similar spirit with other regularized gradient descent 

approaches. In particular, similar to those in Ma et al. [2009], Zhang [2007], and Friedman 

and Popescu [2004], it is an iterative procedure and includes the following main steps: 

computation of the gradients, computation of the selection indicators, and update of the 

estimate in a direction with an acute angle with the gradient vector (which is defined in 

terms of the inner product of the original and selected gradient vectors). On the other hand, 

the proposed approach significantly differs from the existing ones in how the selection 

indicators are computed, which is the most important step in regularized gradient descent. 

Specifically, for a SNP/gene, the proposed selection indicator is the product of S1 and S2. In 

this study, we conduct gene-level analysis. Thus, the selection indicators are derived using 

the gene-level gradient matrix computed in Step 3, which evaluates the overall effect of all 

SNPs within a specific gene on a specific subtype. For a gene, S1 computed in Step 4 can 

identify which subtype(s) it is associated with by comparing gene-level gradients across 

subtypes. Consider for example gene 2 in Table 1. This step of selection can discriminate 

subtypes S1 and S2 from S3. The second selection indicator computed in Step 5 compares a 

gene against all others and identify which gene(s) are more important. In Table 1, this step 

can discriminate genes 1-3 from gene 4. By combining S1 and S2, the proposed algorithm 

can fully identify the sparsity structure presented in Table 1 – it may identify not only which 

genes are more important, but also which subtype(s) those genes are associated with.

In the proposed algorithm, for a gene, the gene-level gradient is defined as the sum over 

SNP-level gradients. This definition may favor larger genes with more SNPs. If one is more 

interested in the average SNP effects within genes, normalization by gene size can be 

employed. Δ is the step size. It is a prefixed, positive number. In our numerical study, we set 

Δ = 0.01. Although in principle it is possible to vary this value for different datasets, 

previous studies usually fix it a priori. Our limited experience suggests that as long as Δ is 

small enough, different values lead to almost identical results. τ1 and τ2 are the threshold 

regularization parameters. Smaller thresholds lead to more genes identified as associated 

with prognosis in each step. At the other extreme, τ1, τ2 ~ 1 leads to an algorithm similar to 

the greedy gradient boosting. In principle, τ1 and τ2 may be different. To reduce 

computational cost, one may set τ1 = τ2, imposing the same level of regularization across 

subtypes and across genes. With fixed thresholds, a larger number of iterations lead to more 

identified genes/SNPs. In our numerical study, we select the thresholds and number of 

iterations using V-fold cross validation because of its computational simplicity and 

flexibility. Specifically, we set V = 5. Although multiple tunings and cross validation are 
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involved, as each iteration only contains simple calculations, the proposed approach is 

computationally affordable.

As described above, the proposed selection indicator construction is intuitively reasonable. 

Following the discussions in Zhang [2007], there may be other ways of construction. As 

there is no optimal construction method, in this study, we focus on the proposed approach 

without considering alternatives.

To better comprehend the proposed approach, we investigate parameter paths, which are the 

estimates as a function of the number of iterations with fixed thresholds. We simulate a 

dataset with three distinct subtypes, each with sample size 100. We simulate 500 genes, each 

with two SNPs. SNPs are correlated if they are in the same gene and independent if in 

different genes. Among the 500 genes, fifteen are associated with prognosis and have 

nonzero regression coefficients. In particular, the fifteen sets of nonzero regression 

coefficients are five copies of those for gene 1-3 in Table 1. The rest 485 genes have zero 

regression coefficients. The logarithms of survival times are generated from the AFT models 

with intercepts equal to zero and standard normal errors. The logarithms of censoring times 

are generated as uniformly distributed. In Figure 1, we fix τ1 = τ2 = 0.95 and show the 

parameter paths for four genes. The first gene is associated with the prognosis of all three 

subtypes. The second gene is associated with two subtypes. The third gene is associated with 

only one subtype, and the fourth gene is not associated with any subtype. Figure 1 shows 

that different types of genes have clearly different parameter paths. Gene 1 is associated 

with all three subtypes, and hence, loosely speaking, more important than the rest three. It is 

included in the model even with a very small number of iterations. Gene 2 and 3 can be 

identified with a moderate number of iterations. Gene 4, the unimportant gene, has zero 

regression coefficients.

Results

Simulation

We simulate data with three distinct subtypes and 100 samples per subtype. We generate the 

SNP measurements using a two-stage procedure [Wu et al. 2009]. We first generate Zm(m = 

1, 2, 3) from a 2,000-dimensional multivariate normal distribution with marginal means zero 

and variances one. For each m, the 2,000 variables belong to 400 clusters, each with size 5. 

Variables j and k within the same cluster have correlation coefficient ρ|k–j| where ρ = 0.6. 

Variables within different clusters are not correlated. With the assumption that SNPs have 

equal allele frequencies, the genotype of the jth SNP is set to be 0, 1 or 2 according to 

whether  or . The cutoff point –c is the first quartile of a 

standard normal distribution. The simulation setting here corresponds to 400 genes with 5 

SNPs per gene. SNPs within the same gene are correlated, whereas SNPs in different genes 

are uncorrelated. Among the 2,000 SNPs, for each subtype, we set 30 to be associated with 

prognosis (with nonzero regression coefficients), and the rest are noises. Thus, for all three 

subtypes combined, there are 90 truly important SNPs. We consider the following scenarios 

for the “locations” of important SNPs:

• Scenario 1: for each subtype, the 30 important SNPs belong to 30 different genes.
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• Scenario 2: for each subtype, the 30 important SNPs belong to 6 genes. The three 

subtypes have the same 6 susceptibility genes;

• Scenario 3: for each subtype, the 30 important SNPs belong to 6 genes. Subtypes 

1-3 have genes 1-6, 4-9, and 7-12 as susceptibility genes, respectively;

• Scenario 4: for each subtype, the 30 important SNPs belong to 6 genes. Subtypes 

1-3 have genes 1-6, 7-12, and 13-18 as susceptibility genes, respectively.

Among the four simulation scenarios, scenario 1 has important SNPs scattered in a large 

number of genes. It contradicts the assumption made with the proposed approach. Scenarios 

2-4 have important SNPs clustered in a small number of genes. They represent different 

overlapping scenarios between different subtypes, ranging from complete to no overlapping. 

Under scenario 1-4, the nonzero regression coefficients are set to be 0.25 or -0.25 with equal 

probabilities. We also consider four additional scenarios. In particular, scenario 5-8 are 

parallel to scenario 1-4, with nonzero regression coefficients set as -0.5 and 0.5 with equal 

probabilities, representing stronger signals. The logarithms of survival times are generated 

from the AFT models with intercepts equal to zero and standard normal errors. The 

logarithms of censoring times are generated independently from uniform distributions. We 

experiment with the parameter of the uniform distributions and choose the one that the 

resulted censoring rates are ~ 40%.

Simulation suggests that the proposed approach is computationally affordable. Analysis of 

one replicate, including tuning parameter selection using cross validation and estimation, 

takes less than three minutes on a regular desktop PC. To better gauge performance of the 

proposed approach, we also consider the following alternatives approaches:

• Alt.1: Consider the standard discrete gradient descent regularization approach 

[Zhang 2007, Friedman and Popescu 2004], which is designed for the analysis of 

data on a single subtype. With this approach, we conduct SNP-level analysis of the 

three subtypes separately and then search for overlap.

• Alt.2: Following a strategy similar to that of the proposed approach, we may extend 

the standard discrete gradient descent regularization approach to the integrative 

analysis of data on multiple subtypes. This approach conducts SNP-level analysis, 

and can be viewed as a special case of the proposed approach where each SNP 

belongs to its own gene.

• Alt.3: We may also extend the standard discrete gradient descent regularization 

approach to conduct gene-level analysis of data on a single subtype. With this 

approach, the “SNP-within-gene” hierarchical structure is accounted for, and the 

three subtypes are analyzed separately and then compared.

There are many other approaches that can be applied to analyze data investigated in this 

study. The above three approaches are chosen for comparison as their statistical framework 

is closest to that of the proposed approach. In particular, Alt.1 is the benchmark for 

regularized gradient descent approaches. In the analysis of a single dataset (a single 

subtype), it has been shown to have performance comparable to or better than other SNP-

level regularized analysis approaches. Approaches Alt.2 and Alt.3 can accommodate 
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multiple subtypes and the SNP-within-gene hierarchical structure, respectively. Thus, 

comparisons with Alt.2 and Alt.3 can establish the merit of conducting gene-level analysis 

and integrative analysis, respectively.

For the eight simulation scenarios, we present the summary statistics based on 200 replicates 

in Table 2. In particular, we compute the numbers of SNPs identified and numbers of true 

positives (summed over all three subtypes) and their standard deviations. Note that although 

the proposed approach is designed to conduct gene-level analysis, as approaches Alt.1 and 

Alt.2 conduct SNP-level analysis, we compute the SNP-level summary statistics so that all 

approaches are compared on the same ground. As the proposed approach identifies genes as 

a whole, gene-level summary statistics can be easily obtained by dividing gene size. Table 2 

suggests that under scenarios 1 and 5, the proposed approach is less satisfactory, identifying 

a large number of false positives. This observation is expected, as the proposed approach 

conducts gene-level analysis, and important SNPs are scattered in a large number of genes 

under these two scenarios. Similar observations and interpretations hold for approach Alt.3. 

Under the other six simulation scenarios where important SNPs are clustered in a small 

number of genes, the proposed approach has performance significantly better than 

alternatives with more true positives and/or fewer false positives. Such an observation 

justifies the merit of conducting gene-level integrative analysis. Performance of the 

proposed approach improves as the level of signals increases. We also note that under a few 

simulation scenarios, the proposed approach may still have quite a few false positives. In 

practical cancer studies, it has been well recognized that a sample with 100 subjects is 

insufficiently powered to tease out all false positives. Downstream functional experiments 

and analysis are still needed to further refine the findings. We have experimented with a few 

other ways of generating SNP measurements with different sample sizes and number of 

SNPs and reached similar conclusions (details omitted).

Analysis of NHL prognosis data

NHL is a heterogeneous group of lymphocytic disorders ranging in aggressiveness from 

very indolent cellular proliferation to highly aggressive and rapidly proliferative process. It 

is the fifth leading cause of cancer incidence and mortality in the US and remains poorly 

understood and largely incurable. A genetic association study was conducted, searching for 

SNPs/genes associated with overall survival in NHL patients [Zhang et al. 2004, Zhang et al. 

2005]. The prognostic cohort consists of 575 NHL patients, among whom 496 donated 

either blood or buccal cell samples. All cases were classified into NHL subtypes according 

to the World Health Organization classification system. Specifically, 155 had DLBCL 

(diffuse large B-cell lymphoma), 117 had FL (follicular lymphoma), 57 had CLL/SLL 

(chronic lymphocytic leukemia/small lymphocytic lymphoma), 34 had MZBL (marginal 

zone B-cell lymphoma), 37 had T/NK-cell lymphoma, and 96 had other subtypes. Because 

of sample size consideration, in our analysis, we focus on DLBCL, FL and CLL/SLL, the 

three largest subtypes in this dataset. The study cohort was assembled in Connecticut 

between 1996 and 2000. Vital status of all subjects was abstracted from the CTR 

(Connecticut Tumor Registry) in 2008.
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When genotyping, we took a candidate gene approach. Specifically, a total of 1462 tag SNPs 

from 210 candidate genes related to immune response were genotyped using a custom-

designed GoldenGate assay. In addition, 302 SNPs in 143 candidate genes previously 

genotyped by Taqman assay were also included. There were a total of 1764 SNPs, 

representing 333 genes. We process data as follows. We remove patients with more than 

20% SNPs missing and then remove SNPs with more than 20% measurements missing. The 

genotyping data were missing for the following reasons: the amount of DNA was too low, 

samples failed to amplify, samples amplified but their genotype could not be determined due 

to ambiguous results, or the DNA quality was poor. We then impute missing SNP 

measurements. A total of 1,633 SNPs pass processing, representing 238 genes.

For DLBCL, 139 patients pass processing. Among them, 61 died, with survival times 

ranging from 0.47 to 10.46 years (mean 4.16 years). For the 78 censored patients, the follow 

up times range from 5.58 to 11.45 years (mean 9.08 years). For FL, 102 patients pass 

processing. Among them, 33 died, with survival times ranging from 0.91 to 10.23 years. For 

the 69 censored patients, the follow up times range from 4.96 to 11.39 years, with mean 8.83 

years. For CLL/SLL, 50 patients pass processing. Among them, 27 died, with survival times 

ranging from 1.91 to 10.13 years (mean 4.85 years). For the 23 censored patients, the follow 

up times range from 4.92 to 11.07 years, with mean 8.83 years.

The following demographic and clinical factors were also measured: age (rescaled to mean 

zero and variance one for better comparability), education (level 1=high school or less; level 

2=some college; level 3=college graduate or more), tumor stage (level 1-4 and unknown), 

B-symptom presence (no; yes; unknown), and initial treatment (none; radiation only; 

chemotherapy-based therapy; other). They include all widely accepted prognostic factors 

[Zhang et al. 2011]. As the goal is to identify prognosis-associated genes, we adjust for the 

demographic and clinical factors but do not conduct any selection with them.

With the proposed approach, twelve genes (34 SNPs) are identified as associated with the 

prognosis of DLBCL. Eleven genes (34 SNPs) are identified as associated with the 

prognosis of FL. Fifteen genes (45 SNPs) are identified as associated with the prognosis of 

CLL/SLL. Gene names and corresponding estimates are shown in Table 3. Among the 

identified genes, six are identified as associated with the prognosis of two subtypes, 

including genes BCL6 (B-cell CLL/lymphoma 6), ERCC5 (excision repair cross-

complementing rodent repair deficiency, complementation group 5) and HES7 (hairy and 

enhancer of split 7) as associated with the prognosis of DLBCL and CLL/SLL, and genes 

MLH1 (mutL homolog 1, colon cancer, nonpolyposis type 2), C8G (C8G complement 

component 8, gamma polypeptide) and ZP1 (zona pellucida glycoprotein 1) as associated 

with the prognosis of FL and CLL/SLL. Gene MEFV (Mediterranean fever) is identified as 

associated with the prognosis of all three subtypes. Searching PubMed suggests that protein 

encoded by gene BCL6 is a zinc finger transcription factor and has been shown to modulate 

the transcription of START-dependent IL-4 responses of B cells. Previous studies have 

shown that this gene is frequently translocated and hypermutated in diffuse large cell 

lymphoma (DLCL) and may be involved in the pathogenesis of DLCL. CLL and SLL are B-

cell NHLs. They are essentially the same disease with slightly different manifestations. 

Gene C8G is complement component 8, gamma polypeptide. It belongs to the immune 
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system pathway. The impairment of immune system has been suggested as a generic risk 

factor of NHL [Zhang et al. 2011]. Gene ERCC5 encodes a single-strand specific DNA 

endonuclease that makes the 3’ incision in DNA excision repair following UV-induced 

damage. The protein may also function in other cellular processes, including RNA 

polymerase II transcription and transcription-coupled DNA repair. In a case-control study, 

this gene has been associated with an increased risk of NHL overall, DLBCL and T cell 

lymphoma [Shen et al. 2006]. The HES7 gene provides instructions for making a 

transcription factor, which is a protein that attaches to specific regions of DNA and helps 

control the activity of particular genes. The HES7 protein controls the activity of genes in 

the Notch pathway, an important pathway in embryonic development. The implication of 

Notch signaling pathway in lymphoma was discussed in Kochert et al. [2011]. Gene MEFV 

is responsible for familial Mediterranean fever (FMF). The rate of MEFV gene mutations 

has been studied in Celik et al. [2010], which shows that the mutation rate is high in patients 

with multiple myeloma and acute lymphocytic leukemia, moderate to low in patients with 

chronic lymphocytic leukemia and NHL, and no in Hodgkin lymphoma patients. The 

possible connection between FL and FMF was discussed in Kadikoylu et al. [2008]. 

Matsushita and others [2005] showed that hypermethylation of the MLH1 gene was 

involved in the pathogenesis of hematological malignancies. Reiss and others [2010] studied 

the role of MLH1 for lymphomagenesis in mice models, and showed that inactivation of 

MLH1 might lead to a limited incidence of T-cell lymphomas. Many genes identified as 

associated with only one subtype also have important biological implications (details 

omitted). For genes/SNPs associated with more than one subtypes, their regression 

coefficients have the same signs but different magnitudes. For those genes, the qualitative 

conclusions are similar for different subtypes.

We evaluate the reproducibility of identified marker using a resampling approach [Huang 

and Ma 2010], which proceeds as follows. First randomly sample 3/4 of the subjects without 

replacement. Apply the proposed approach (including tuning parameter selection and 

estimation) to the sampled subjects. Repeat this process 300 times. Using the 300 sets of 

identified markers, for each gene/SNP, calculate the probability it is identified. This 

probability is referred to as “occurrence index”. For genes identified using the whole 

sample, their occurrence indexes are shown in Table 4. We see that most genes identified in 

Table 3 have high occurrence indexes, suggesting satisfactory reproducibility. In particular, 

gene MEFV, which is identified as associated with all three subtypes, has occurrence 

indexes 0.997 (DLBCL) and 1.000 (FL, CLL/SLL), suggesting its high reproducibility. 

There are a few identified genes with moderate to low occurrence indexes. A similar 

observation has been made in Huang and Ma [2010]. It is believed to be caused by the 

highly noisy nature of genetic data. For genes not identified in Table 3, the highest 

occurrence index is 0.325, with mean occurrence index 0.002 (more details available from 

the authors). The dramatic difference between the identified and other genes suggests 

satisfactory stability of the proposed approach.

We analyze data using the three alternative approaches described in the last section. 

Approach Alt.1 identifies 18 (DLBCL), 13 (FL) and 77 (CLL/SLL) SNPs, respectively. The 

SNP sets for DLBCL and CLL/SLL have three SNPs in common, and the sets for FL and 

CLL/SLL have one SNP in common. Approach Alt.2 identifies 24 (DLBCL), 22 (FL) and 
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39 (CLL/SLL) SNPs, respectively. The SNP sets for DLBCL and CLL/SLL have one SNP 

in common, and the sets for FL and CLL/SLL have one SNP in common. Approach Alt.3 

identifies 17 (DLBCL), 20 (FL) and 45 (CLL/SLL) SNPs, respectively. The SNP sets for 

DLBCL and FL have five SNPs in common; The sets for DLBCL and CLL/SLL have ten 

SNPs in common; And the sets for FL and CLL/SLL have nine SNPs in common. By simply 

looking at the numbers of identified SNPs, we see that the proposed approach identifies 

different sets of susceptibility genes/SNPs. As described above, common genes identified 

using the proposed approach have important biological implications. However, as the 

susceptibility genes of NHL are still being debated [Zhang et al. 2011], we are unable to 

determine objectively which approach identifies “more meaningful” genes.

We evaluate the prediction performance of different approaches. Prediction performance 

may provide partial information on identification performance. In particular, if an approach 

can identify more meaningful SNPs/genes, it may have more accurate prediction. Here we 

adopt a random sampling approach: first randomly split data into a training and a testing sets 

with sizes 3:1. Apply the proposed approach (and alternatives) to the training set, identify 

SNPs/genes, and construct predictive models. Make prediction for subjects in the testing set, 

create two risk groups by dichotomizing the risk scores β′ X at the medians, and compute the 

logrank statistic, which assesses whether the predictive models can separate patients into 

groups with different survival risks. To avoid bias caused by an extreme sampling, repeat 

this procedure 300 times and compute the average logrank statistic. Note that the prediction 

evaluation is a “byproduct” of the occurrence index calculation and does not incur much 

additional computational cost. The average logrank statistics so computed are 2.026 (Alt.1), 

3.801 (Alt.2), 2.069 (Alt.3) and 4.417 (proposed), respectively. The proposed approach has 

the best prediction performance, with p-value 0.036 (the logrank statistic is χ2-distributed 

with degree of freedom one). Logrank statistics for the other approaches are not significant 

at the 0.05 level.

This NHL dataset has been analyzed in our previous studies. In particular, Ma and others 

[2010b] conducted standard single-SNP analysis (results not repeated here). Comparing the 

analysis results presented in Table 3 and those in Ma et al. [2010b] suggests that the 

proposed approach identifies genes/SNPs significantly different from standard single-SNP 

analysis. In addition, Han and others [2010a] demonstrated that the demographic and 

clinical risk factors alone did not have satisfactory prediction performance with p-value for 

the logrank statistic greater than 0.05.

Discussion

Identification of genetic risk factors for cancer prognosis is of significant interest. Although 

the majority of published studies investigate one type of cancer or one subtype at a time, 

adopting novel integrative analysis techniques and analyzing multiple types of cancers or 

multiple subtypes may improve efficiency and lead to new insights into the genetic basis of 

cancer prognosis and understanding of disease-disease relationships. As suggested in Sirota 

et al. [2009], SNPs can be classified into four categories: those with similar effects on 

multiple cancers, those with inverse effects on multiple cancers, those with effects on only a 

single cancer, and those with no effects. SNPs in different categories have different 

Ma et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2014 January 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



biological and therapeutic implications. In this study, with prognosis data on multiple 

subtypes of the same cancer and SNP measurements, we develop a regularized gradient 

descent approach for gene-level integrative analysis. The proposed approach is intuitively 

reasonable and has affordable computational cost and satisfactory empirical performance.

As manifested with multiple cancers, properly defining subtypes is challenging. 

Misclassification is not rare in practice. The proposed objective function and approach have 

no “built-in” robustness property. If subtype misclassification is of serious concern, 

alternative, more robust objective functions need to be adopted. With regularization 

approaches, genes belong to two “clusters”: important genes have nonzero effects which are 

often required to be above a certain level, and unimportant genes have exactly zero effects. 

Such a formulation provides a simplified description of cancer prognosis. There may be very 

small nonzero effects that cannot be detected with regularization approaches. Nevertheless, 

regularization approaches can detect large to moderate effects, which are typically of more 

interest. With the proposed approach, it is assumed that important genes contain SNPs that 

are all associated with prognosis, and so within-gene selection is not conducted. With 

practical data, it is still possible that important genes contain noisy SNPs. It may be of 

interest to extend the proposed approach in future studies to conduct within-gene selection. 

The simulation setting has been designed to mimic the NHL dataset. A genome-wide 

association study may measure a much larger number of SNPs. In principle, the proposed 

approach can be directly applied. However, simultaneously analyzing whole-genome data 

can be computationally prohibitive. The same computational problem is encountered with 

many other joint analysis methods. In practice, prescreening can be first conducted, which 

may remove a large number of SNPs/genes highly unlikely to be important and significantly 

reduce computational cost. The NHL prognosis study analyzed in this article is among the 

very few that investigate the genetic basis of NHL prognosis. Our analysis may provide new 

insights into the relationship between different NHL subtypes, which has been less 

investigated in the literature. Because of the candidate gene approach, genes/SNPs important 

to one or multiple subtypes may have been omitted from profiling.

In this study, we have focused on methodological development. Satisfactory performance of 

the proposed approach is demonstrated via simulation. Data analysis shows that the 

proposed approach identifies genes/SNPs different from alternatives. Some theoretical 

aspects of the proposed approach may be derived following Zhang [2007]. As a limitation of 

this study, we are unable to validate the identified genes. The validation deserves significant 

effort and is postponed to future studies.
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Figure 1. 
Parameter path for a simulated dataset. Left-upper panel: a gene associated with three 

subtypes; Right-upper panel: a gene associated with two subtypes; Left-lower panel: a gene 

associated with one subtype; Right-lower panel: a gene not associated any subtype. Each 

gene has two SNPs. Different types of lines represent different genes.
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Table 1

Matrix of regression coefficients for a cancer study with three subtypes, four genes and eight SNPs. An empty 

cell corresponds to a zero regression coefficient.

Subtype

Gene SNP S1 S2 S3

1 1_1 0.20 0.19 0.21

1_2 -0.22 -0.19 -0.21

2 2_1 0.18 0.21

2_2 -0.21 -0.21

3 3_1 0.21

3_2 -0.18

4 4_1

4_2
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Table 4

Analysis of NHL data: occurrence index for identified genes.

Gene DLBCL FL CLL/SLL

ACAD11 0.322 0.433 0.208

ALOX12 0.346 0.478 0.173

BCL2L1 0.173 0.000 0.827

BCL6 0.651 0.522 0.827

C1QG 0.446 0.522 0.000

C8G 0.536 0.474 1.000

CCL2 0.464 0.512 0.000

CTLA4 0.142 0.000 0.820

CYBA 0.349 0.287 0.789

CYP1B1 0.353 0.478 0.173

DHX33 0.478 0.522 0.000

ERCC2 0.457 0.522 0.000

ERCC5 0.612 0.522 0.702

HES7 0.630 0.522 0.827

HSPA6 0.173 0.000 0.827

ICAM2 0.426 0.467 0.000

IL10 0.315 0.478 0.173

IL6 0.249 0.273 0.131

LEPR 0.453 0.522 0.048

LMO2 0.170 0.000 0.827

MEFV 0.997 1.000 1.000

MLH1 0.522 0.478 1.000

NAT2 0.156 0.000 0.827

PTK9L 0.346 0.478 0.173

SENP3 0.176 0.000 0.827

SHMT1 0.176 0.000 0.827

SLC19A1 0.235 0.343 0.000

SOCS1 0.346 0.478 0.173

TCN1 0.478 0.522 0.000

ZP1 0.429 0.384 0.958
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