Chapter 10: Inference Based on Two Samples

One population \rightarrow Two populations: a natural generalization
$\mu \rightarrow$ Comparisons between μ_{1} and μ_{2}.
(1) Confidence interval for:

- $\mu_{1}-\mu_{2}$;
- $p_{1}-p_{2}$
(2) Test about:
- $\mu_{1}-\mu_{2}$;
- $p_{1}-p_{2}$

Real data examples:

(1) Comparison of Learning methods for GRE;
(2) Comparison of Treatments for cancers ;
(3) Comparison of MPG between Hybrid (e.g. 2013 Ford Fusion) and Traditional cars.
(4) Comparison of Working Stress between industry and academia;

Outline of Chapter 10: Inference Based on Two Samples

(1) z Tests and Confidence Intervals for a Difference Between Two Population Means

- Normal sample
- General sample, but large sample size
- Confidence Interval for $\mu_{1}-\mu_{2}$
(2) The Two-Sample t Test and Confidence Interval
- Non-pooled t Procedures
- Pooled t Procedures
(3) Analysis of Paired Data
- Paired Versus Unpaired Experiments.
- The paired t test for μ_{D}.
- Confidence interval for μ_{D}.
(4) Inference About Two Population Proportions
- Large-sample Test Procedure
- Large-sample Test Confidence interval for $p_{1}-p_{2}$.

Keep in mind

In this chapter, statistical Settings:
(1) X_{1}, \ldots, X_{m} is a random sample from Population A with mean μ_{1} and variance σ_{1}^{2};
(2) Y_{1}, \ldots, Y_{n} is a random sample from Population B with mean μ_{2} and variance σ_{2}^{2};

And the tests and C.I.'s depend on
(1) Whether the two samples are independent with each other;
(2) Whether the sample sizes are large;
(3) Whether we assume Normal distribution on the two samples;
(4) When (2) is true, whether we know the values of σ_{1}^{2} and σ_{2}^{2}.

Chapter 10 - Lecture 1
 Tests and Confidence Intervals for a Difference between two population means

Yuan Huang

March 15, 2013
(1) Case I: normal sample with known variance Statistical Setting
Confidence Interval of $\mu_{1}-\mu_{2}$
Testing $H_{o}: \mu_{1}-\mu_{2}=c_{0}$
Type II error

Case I: normal sample with known variance

Statistical Settings: This is the simplest case where the two samples are independent and we assume normal distribution on the two samples, with variance known.
(1) X_{1}, \ldots, X_{m} i.i.d $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ with σ_{1}^{2} known;
(2) Y_{1}, \ldots, Y_{n} i.i.d $N\left(\mu_{2}, \sigma_{2}^{2}\right)$ with σ_{2}^{2} known;
(3) The two samples are independent.

Then we have the probability distribution:

$$
\frac{\bar{X}_{m}-\bar{Y}_{n}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / m+\sigma_{2}^{2} / n}} \sim N(0,1) .
$$

Confidence Interval of $\mu_{1}-\mu_{2}$

In this case, a $100(1-\alpha) \%$ Confidence Interval of $\mu_{1}-\mu_{2}$ is:

$$
\left(\bar{x}_{m}-\bar{y}_{n}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}, \bar{x}_{m}-\bar{y}_{n}+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}\right) .
$$

Similarly we can get one-sided intervals.

Testing $H_{o}: \mu_{1}-\mu_{2}=c_{0}$

In this case the test statistic $H_{0}: \mu_{1}-\mu_{2}=c_{0}$ is:

$$
Z=\frac{\bar{X}_{m}-\bar{Y}_{n}-c_{0}}{\sqrt{\sigma_{1}^{2} / m+\sigma_{2}^{2} / n}}
$$

(1) For $H_{1}: \mu_{1}-\mu_{2}>c_{0}$, we reject H_{o} when $z>z_{\alpha}$;
(2) For $H_{1}: \mu_{1}-\mu_{2}<c_{0}$, we reject H_{o} when $z<-z_{\alpha}$;
(3) For $H_{1}: \mu_{1}-\mu_{2} \neq c_{0}$, we reject H_{o} when $|z|>z_{\alpha / 2}$.

Recall: p-value approach

Comments:

(1) If we reject $H_{0}: \mu_{1}=\mu_{2}$ with $H_{1}: \mu_{1}>\mu_{2}$, then we say μ_{1} is significantly greater than μ_{2};
(2) If we reject $H_{0}: \mu_{1}=\mu_{2}$ with $H_{1}: \mu_{1}<\mu_{2}$, then we say μ_{1} is significantly less than μ_{2};
(3) If we reject $H_{0}: \mu_{1}=\mu_{2}$ with $H_{1}: \mu_{1} \neq \mu_{2}$, then we say μ_{1} is significantly different from μ_{2};

Relationship between the confidence interval and the hypothesis test (for any number of populations) based on the same probability distribution:
(1) We reject H_{0} in two-tailed test if the null value is not included in the two-tailed C.I;
(2) We reject H_{o} in upper-tailed test if the null value is not included in the lower-tailed C.I;
(3) We reject H_{0} in lower-tailed test if the null value is not included in the upper-tailed C.I.

Calculating Type II error probabilities

Let

$$
\sigma=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

(1) $H_{A}: \mu_{1}-\mu_{2}>\Delta_{0}$,

$$
\beta\left(\Delta^{\prime}\right)=\Phi\left(z_{\alpha}-\frac{\Delta^{\prime}-\Delta_{0}}{\sigma}\right)
$$

(2) $H_{A}: \mu_{1}-\mu_{2}<\Delta_{0}$

$$
\beta\left(\Delta^{\prime}\right)=1-\Phi\left(-z_{\alpha}-\frac{\Delta^{\prime}-\Delta_{0}}{\sigma}\right)
$$

(3) $H_{A}: \mu_{1}-\mu_{2} \neq \Delta_{0}$

$$
\beta\left(\Delta^{\prime}\right)=\Phi\left(z_{\alpha / 2}-\frac{\Delta^{\prime}-\Delta_{0}}{\sigma}\right)-\Phi\left(-z_{\alpha / 2}-\frac{\Delta^{\prime}-\Delta_{0}}{\sigma}\right)
$$

Example 10.1

Each students in a class of 21 responded to a questionnaire that requested their grade point average (GPA) and the number of hours each week that they studied. Assume normality for GAP and the standard deviation is 0.6.

- 11 students studied for $>10 \mathrm{~h} /$ week: the sample mean is 3.06
- 10 students studied for $<10 \mathrm{~h} /$ week: the sample mean is 2.97 Treating the two samples as random, is there evidence that true average GPA differs for the two study times?

