Chapter 10: Inference Based on Two Samples

One population \rightarrow Two populations: a natural generalization

 $\mu \rightarrow$ Comparisons between μ_1 and μ_2 .

- 1 Confidence interval for :
 - $\mu_1 \mu_2;$
 - $p_1 p_2$
- 2 Test about :
 - $\mu_1 \mu_2;$
 - $p_1 p_2$

A 3 >

Real data examples:

- 1 Comparison of Learning methods for GRE;
- 2 Comparison of Treatments for cancers ;
- 3 Comparison of MPG between Hybrid (e.g. 2013 Ford Fusion) and Traditional cars.
- Comparison of Working Stress between industry and academia;

Outline of Chapter 10: Inference Based on Two Samples

- z Tests and Confidence Intervals for a Difference Between Two Population Means
 - Normal sample
 - General sample, but large sample size
 - Confidence Interval for $\mu_1 \mu_2$
- 2 The Two-Sample t Test and Confidence Interval
 - Non-pooled t Procedures
 - Pooled t Procedures
- 3 Analysis of Paired Data
 - Paired Versus Unpaired Experiments.
 - The paired t test for μ_D .
 - Confidence interval for μ_D .
- **4** Inference About Two Population Proportions
 - Large-sample Test Procedure
 - Large-sample Test Confidence interval for $p_1 p_2$.

Keep in mind

In this chapter, statistical Settings:

- X_1, \ldots, X_m is a random sample from Population A with mean μ_1 and variance σ_1^2 ;
- **2** Y_1, \ldots, Y_n is a random sample from Population B with mean μ_2 and variance σ_2^2 ;

And the tests and C.I.'s depend on

- 1 Whether the two samples are independent with each other;
- 2 Whether the sample sizes are large;
- 3 Whether we assume Normal distribution on the two samples;
- **4** When (2) is true, whether we know the values of σ_1^2 and σ_2^2 .

A (10) A (10)

Outline

Case I: normal sample with known variance

Chapter 10 - Lecture 1 Tests and Confidence Intervals for a Difference between two population means

Yuan Huang

March 15, 2013

Chapter 10 - Lecture 1 Tests and Confidence Intervals for a Difference between two population means

Yuan Huang

Outline

Case I: normal sample with known variance

Case I: normal sample with known variance Statistical Setting Confidence Interval of μ₁ – μ₂ Testing H_o : μ₁ – μ₂ = c₀ Type II error

Yuan Huang

Statistical Setting

Case I: normal sample with known variance

Statistical Settings: This is the simplest case where the two samples are independent and we assume normal distribution on the two samples, with variance known.

1
$$X_1, \ldots, X_m$$
 i.i.d $N(\mu_1, \sigma_1^2)$ with σ_1^2 known;

2
$$Y_1, \ldots, Y_n$$
 i.i.d $N(\mu_2, \sigma_2^2)$ with σ_2^2 known;

3 The two samples are independent.

Then we have the probability distribution:

$$rac{ar{X}_m - ar{Y}_n - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} \sim N(0, 1).$$

Case I: normal sample with known variance ◦ ◦ ◦ ◦

Confidence Interval of $\mu_1 - \mu_2$

Confidence Interval of $\mu_1 - \mu_2$

In this case, a $100(1-\alpha)$ % Confidence Interval of $\mu_1 - \mu_2$ is:

$$(\bar{x}_m - \bar{y}_n - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}, \bar{x}_m - \bar{y}_n + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}).$$

Similarly we can get one-sided intervals.

3

• E •

0 0 000

Testing $H_o: \mu_1 - \mu_2 = c_0$

Testing $H_o: \mu_1 - \mu_2 = c_0$

In this case the test statistic $H_o: \mu_1 - \mu_2 = c_0$ is:

$$Z = \frac{\bar{X}_m - \bar{Y}_n - c_0}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}$$

1 For $H_1: \mu_1 - \mu_2 > c_0$, we reject H_o when $z > z_\alpha$; 2 For $H_1: \mu_1 - \mu_2 < c_0$, we reject H_o when $z < -z_\alpha$; 3 For $H_1: \mu_1 - \mu_2 \neq c_0$, we reject H_o when $|z| > z_{\alpha/2}$. Recall: p-value approach

Testing $H_o: \mu_1 - \mu_2 = c_0$

Comments:

- **1** If we reject $H_0: \mu_1 = \mu_2$ with $H_1: \mu_1 > \mu_2$, then we say μ_1 is significantly greater than μ_2 ;
- **2** If we reject $H_0: \mu_1 = \mu_2$ with $H_1: \mu_1 < \mu_2$, then we say μ_1 is significantly less than μ_2 ;
- **3** If we reject $H_0: \mu_1 = \mu_2$ with $H_1: \mu_1 \neq \mu_2$, then we say μ_1 is significantly different from μ_2 ;

Relationship between the confidence interval and the hypothesis test (for any number of populations) based on the same probability distribution:

- We reject H_o in two-tailed test if the null value is not included in the two-tailed C.I;
- We reject H_o in upper-tailed test if the null value is not included in the lower-tailed C.I;
- **3** We reject H_o in lower-tailed test if the null value is not included in the upper-tailed C.I.

→ ∃ →

0000

Type II error

Calculating Type II error probabilities

$$\sigma = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$

$$H_{A}: \mu_{1} - \mu_{2} > \Delta_{0},$$

$$\beta(\Delta') = \Phi\left(z_{\alpha} - \frac{\Delta' - \Delta_{0}}{\sigma}\right)$$

$$H_{A}: \mu_{1} - \mu_{2} < \Delta_{0}$$

$$egin{aligned} &\mu_1-\mu_2<\Delta_0\ η(\Delta')=1-\Phi\left(-z_lpha-rac{\Delta'-\Delta_0}{\sigma}
ight) \end{aligned}$$

(a)
$$H_A: \mu_1 - \mu_2 \neq \Delta_0$$

$$\beta(\Delta') = \Phi\left(z_{\alpha/2} - \frac{\Delta' - \Delta_0}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{\Delta' - \Delta_0}{\sigma}\right)$$

Chapter 10 - Lecture 1 Tests and Confidence Intervals for a Difference between two population means

Yuan Huang

nan

Type II error

Example 10.1

Each students in a class of 21 responded to a questionnaire that requested their grade point average (GPA) and the number of hours each week that they studied. Assume normality for GAP and the standard deviation is 0.6.

- 11 students studied for > 10 h/week: the sample mean is 3.06
- 10 students studied for < 10 h/week: the sample mean is 2.97

Treating the two samples as random, is there evidence that true average GPA differs for the two study times?