Chapter 11 - Lecture 1 Single Factor ANOVA

Yuan Huang

April 5, 2013

Chapter 11 - Lecture 1 Single Factor ANOVA

Yuan Huang

< 🗇 🕨

590

Chapter 9 : hypothesis testing for one population mean. Chapter 10: hypothesis testing for two population means.

What comes next?

Chapter 9 : hypothesis testing for one population mean.

Chapter 10: hypothesis testing for two population means.

What comes next?

3 or more population means!

Examples of multiple population comparisons:

- Compare safety factors for multiple makers of cars.
- Compare effect of the same drug in different doses.
- Compare survival time for different treatments for cancers.
- Compare the yield of crop with different pesticides.

Father of Modern statistics - Sir R.A. Fisher

 ANOVA 1918, 1919 (Rothamsted Experimental Station (studies in crop variation)).

Chapter 11 - Lecture 1 Single Factor ANOVA

Definitions

- Factor: The characteristic that labels the populations.
- Levels: The populations that are referred to.

Example: An experiment to study the effects of five different brands of gasoline on automobile engine operating efficiency

- 5 populations;
- Factor: brands of gasoline (single factor);
- Levels: Exxon, Sheetz, Snapper, Shell, X-mobile.

Example : An experiment to study the effect of sunshine and water in growing corns. Suppose the sunshine can be: intense, weak, bare; amount of water can be: much, little.

- $2 \times 3 = 6$ populations;
- Factors: sunshine and water (two factors);
- Levels of factors: intense, weak and bare for sunshine; much and little for water.

When the response is numerical and factor is categorical (finite number of levels), we could apply the analysis of variance **ANOVA**. Depending on how many factors you have in your study (to label your population), comparisons can be classified as:

- Single-factor study (One-way ANOVA);
- Two-factor study (Two-way ANOVA).

In this lecture, we are introducing One-way ANOVA.

Analysis of Variance

We assume *I* populations

 μ_1 = the mean of population 1; ... μ_I = the mean of population *I*.

Hypothesis:

 $H_0: \mu_1 = \ldots = \mu_I$ vs $H_1:$ at least two $\mu'_I s$ differ.

∢ ≣ ▶

There are three assumptions:

- Each sample has the same size, denoted by *J* the data is balanced.
- The populations are normally distributed with mean μ_i .
- Equal variance: $\sigma_1^2 = \ldots = \sigma_I^2$.

Note: To verify equality of variances, there is a formal test called the Levene test. A rule of thumb that one can use is that the largest standard deviation is not larger than two times the smaller.

Example

Let me first give some numbers to help understand the notations will be introduced.

- Assume I am teaching on three different sections of stat 200 and I am giving them a test. I want to test if the true averages on the test for all classes are equal. I am selecting a sample of 5 students from each class.
- Class 1: 70, 50, 100, 100, 70
- Class 2: 60, 85, 65, 100, 30
- Class 3: 80, 50, 90, 75, 85

Means

Sample Mean and Grand Mean

 X_{ij} : denote the j^{th} observation in the i^{th} sample.

The individual sample means :

$$ar{X}_{i.} = rac{\displaystyle\sum_{j=1}^J X_{ij}}{\displaystyle J}$$

The grand mean is the pooled sample mean

$$\bar{X}_{..} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}}{IJ}$$

Variance

Sample Variance

Sample variance:

$$S_i^2 = rac{{\sum\limits_{j = 1}^J {(X_{ij} - ar{X}_{i.})^2 } }}{{J - 1}}$$

Chapter 11 - Lecture 1 Single Factor ANOVA

Yuan Huang

DQC

臣

・ロト ・四ト ・ヨト ・ヨト

Idea

Hypothesis:

$$H_0: \mu_1 = \ldots = \mu_I$$
 vs $H_1:$ at least two $\mu'_i s$ differ.

- In order for the null hypothesis to be true, we expect the sample means $\bar{x}_{i.}$ to be as close to the grand mean $\bar{x}_{..}$ as possible.
- How to define close?

What we did in the last chapter:

For example in the pooled two-sample t test, if m = n;

$$T = \frac{\bar{X}_{1.} - \bar{X}_{2.} - 0}{\sqrt{S_p^2 \times 2/n}} \sim t_{2n-2}$$
$$T^2 = \frac{(\bar{X}_{1.} - \bar{X}_{..})^2 + (\bar{X}_{2.} - \bar{X}_{..})^2}{S_p^2/n} \sim F_{1,2n-2}$$

This test can be easily generalized.

3

Construction

We expect our test can be based on the following statistic:

$$\frac{(\bar{X}_{1.}-\bar{X}_{..})^2+(\bar{X}_{2.}-\bar{X}_{..})^2+(\bar{X}_{3.}-\bar{X}_{..})^2}{S_p^2/n}$$

More generally, if the factor has I levels, it will be

$$\frac{(\bar{X}_{1.} - \bar{X}_{..})^2 + \ldots + (\bar{X}_{I.} - \bar{X}_{..})^2}{S_p^2/n}$$

590

- < ≣ →

Error Sum of Square SSE

Definition: error sum of squares SSE:

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{ij} - \bar{X}_{i.})^2 = (J-1) \sum_{i=1}^{I} S_i^2$$

• Distribution of SSE:

$$\frac{SSE}{\sigma^2} \sim \chi^2_{I(J-1)}$$

Chapter 11 - Lecture 1 Single Factor ANOVA

590

< ∃⇒

< 🗇 🕨

Treatment sum of square SSTr

Definition: treatment sum of squares SSTr:

$$SSTr = J \sum_{i=1}^{l} (\bar{X}_{i.} - \bar{X}_{..})^2$$

• Distribution of SSTr: (If H₀ is true)

$$\frac{SSTr}{\sigma^2} \sim \chi^2_{I-1}$$

Chapter 11 - Lecture 1 Single Factor ANOVA

A ■

Definition: Sum of Squares Total (SST):

$$SST = \sum_i \sum_j (X_{ij} - ar{X}_{\cdot \cdot})^2$$

Mathematically, under the assumption of balanced data, SST = SSTr + SSE, called **the fundamental ANOVA identity**.

< ∃ >

A ■

Recall:
$$H_0: \mu_1 = \ldots = \mu_I$$
. Denote $\sigma^2 = \sigma_1^2 = \ldots = \sigma_I^2$

Theorem: Under all the assumptions (balanced data, normal distribution, equal variance), we have

- $SSE/\sigma^2 \sim \chi^2_{I(J-1)}$ no matter H_0 is true or not;
- $SSTr/\sigma^2 \sim \chi^2_{I-1}$ if and only if H_0 is true;
- SSTr and SSE are independent random variables.

where

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{ij} - \bar{X}_{i.})^2 = (J-1) \sum_{i=1}^{I} S_i^2$$

$$SSTr = J \sum_{i=1}^{J} (\bar{X}_{i.} - \bar{X}_{..})^2$$

- < ∃ >

Comments:

- This theorem can be easily verified in the two-sample case it's equivalent to the pooled two-sample t test.
- An immediate result is:

$$\frac{SSTr/[\sigma^2(I-1)]}{SSE/[\sigma^2I(J-1)]} \sim F_{I-1,I(J-1)} \text{ under } H_0$$

• If H_0 is not true, the F value tends to be large.

< ∃ >

The F test:

$$F = \frac{MSTr}{MSE} = \frac{SSTr/[\sigma^2(I-1)]}{SSE/[\sigma^2I(J-1)]}$$

 $F \sim F_{I-1,I(J-1)}$ under H_0 . We reject H_0 at level α whenever $F > F_{\alpha,I-1,I(J-1)}$.

DQC

э

イロト イヨト イヨト イヨト

Introduction	Definition o o	Construction
Sum of Squares		

Definition:

- the mean square for treatments is MSTr = SSTr/(I-1).
- the mean square for error is MSE = SSE/[I(J-1)].

Comments:

Mean square = Sum of square / corresponding degree of freedom

回 と く ヨ と く ヨ と

ANOVA Table

• All the previous results can be summarized in the following Table:

Source of		Sum of	Mean	
variation	df	Squares	Squares	F
Treatments	I - 1	SSTr	MSTr	MSTr/MSE
Error	I(J-1)	SSE	MSE	
Total	IJ-1	SST		

Table: ANOVA TABLE

590

э

イロト イヨト イヨト イヨト

Summarization

If the means of \geq 3 populations are compared:

- check assumptions:
 - Independence between samples (for one-way ANOVA): based on how the data is collected.
 - **2** Balanced Data: each sample has the same size *J*;
 - Normality Assumption: If J is large, use normal probability plot in each sample; otherwise draw this plot for pooled x_{ii} - x̄_i.;
 - 4 Equal Variance
- Fill out (one-way) ANOVA table.
- Make decision based on F-test.

The most important thing in practice (if a stat software is

available) is:

- 1 to know when ANOVA can be used;
- 2 to know how to read the ANOVA table from the output.

4 3 b

A.

From Minitab:

Analysi	s of Var	iance					
Source	DF	33	MS	F	P		
Factor	3	4703.19	1567.73	206.72	0.000		
Error	16	121.34	7.58				
Total	19	4824.53					
				Individu	al 95% CI	Is For Me	an
				Based on Pooled StDev			
Level	Ν	Mean	StDev	+	+	+	+
Feed 1	5	60.68	3.03	(*-)			
Feed 2	5	69.24	2.96	(-	·*-)		
Feed 3	5	100.34	2.16				(-*-)
Feed 4	5	86.38	2.78			(-*)	
				+	+	+	+
Pooled	StDev =	2.75		60	75	90	105

590

Э

< □ > < □ > < □ > < □ > < □ > .

From R:

Source	DF	Sum of squares	Mean squares	F ratio	F probability
Between	2	1,961.63	980.81	1.1868	0.3085
Within	131	10,8261.69	826.42		
Total	133	11,0223.32			
Group		Ν	Mean per o	cent	STD error
Electronic pro	ducts	97	42.47		2.92
Recreational e	auinment	26	24.04		5.62
Appliances	4	11	33.63		8.58
Total		134	40.12		2.48
Note:					
Bartlett's Box	$f = 0.001 \ p = 0.9$	99			

590

æ

・ロン ・四 と ・ ヨ と ・ モ と