Outline	Random variable and Observation	Random Sample 0 00	Statistic ○ ○	Sampling Distribution O O O	Exercises

Chapter 6 - Lecture 1 Statistics and their distribution

Yuan Huang

January 9th, 2013

Chapter 6 - Lecture 1 Statistics and their distribution

Yuan Huang

Outline	Random variable and Observation	Random Sample o oo	Statistic 0 0	Sampling Distribution o o o	Exercises

Overview of Chapter 6

Chapter 6 : Statistics and Sampling Distributions

- **1** 6.1 Statistics and Their Distributions
 - Introduce definitions.
- **2** 6.3 The Distribution of a Linear Combination
 - Tools for proofs.
- **3** 6.2 The Distribution of the Sample Mean
 - Important properties for sample mean
- **4** 6.4 Distribution Based on a Normal Random Sample
 - Introduce several important distributions.

Outline	Random variable and Observation	Random Sample	Statistic	Sampling Distribution	Exercises
	000				
		00			

2 Random Sample

Definitions Examples

3 Statistic

Definition Examples

4 Sampling Distribution

Definition Finding Sampling Distributions Example

-≣->

Outline	Random variable and Observation ●○○	Random Sample 0 00	Statistic ○ ○	Sampling Distribution O O	Exercises
Definitions					

- Random variables X_1 and X_2 , ..., X_n , where *n* denotes the **sample size**.
- Let say, I have random variables So if I get a random sample of size 3, *n* = 3.
- If in observation, X₁ takes value 1, then denote it as x₁ = 1.
 and let's say the values are x₁ = 2, x₂ = 1, x₃ = 1.
- What is the difference between X_1 and x_1 ?

Outline	Random variable and Observation ○●○	Random Sample 0 00	Statistic ○ ○	Sampling Distribution O O O	Exercises
Definitions					

Random variable and Observation

- X denotes a random variable which is unknown.
- x denotes the **observed value** of the random variable which is known and might be different from sample to sample.

- E - N

Outline	Random variable and Observation ○○●	Random Sample 0 00	Statistic ○ ○	Sampling Distribution O O O	Exercises
Definitions	:				

Random variable and Observation

- Random variables have an uncertainty for their values.
- That means two things:
 - You do not know what the value of random variables are until you actually see the observed values in the sample.
 - Any value depending on random variables will be expected to differ from sample to sample.

Outline	Random variable and Observation	Random Sample ● ○○	Statistic ○ ○	Sampling Distribution O O	Exercises
Definitions	3				

Random sample = iid

- What a random sample is?
 - All random variables are independent
 - All random variables come from the same distribution (as from the population), that is they are identically distributed
- In short, we write **iid**, which means independent and identically distributed
- Intuitively, random sample is the sample that is representative of the population.

Outline	Random variable and Observation	Random Sample ● ○○	Statistic ○ ○	Sampling Distribution O O	Exercises
Definitions	3				

Random sample = iid

- What a random sample is?
 - All random variables are independent
 - All random variables come from the same distribution (as from the population), that is they are identically distributed
- In short, we write **iid**, which means independent and identically distributed
- Intuitively, random sample is the sample that is representative of the population.

Randomness of Sample is always tricky. In this course we just assume it unless otherwise explicitly specified.

Outline	Random variable and Observation	Random Sample ○ ●○	Statistic 0 0	Sampling Distribution O O	Exercises
Examples					

Do you know π ?

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ○

590

Outline	Random variable and Observation	Random Sample ⊙ ●○	Statistic ○ ○	Sampling Distribution O O O	Exercises
Examples					

Do you know π ? How many digits you can tell?

590

E

イロン イヨン イヨン イヨン

Outline	Random variable and Observation	Random Sample ⊙ ●○	Statistic ○ ○	Sampling Distribution O O O	Exercises
Examples					

Do you know π ? How many digits you can tell?

Required Readings: Are the Digits of π an Independent and Identically Distributed Sequence?

Outline	Random variable and Observation	Random Sample ○ ○●	Statistic 0 0	Sampling Distribution O O	Exercises
Examples					

Not example:

1 Convenient Sample: to select sample that is easy to get

- 1 Select your family members;
- **2** Select your friends and classmates;
- **3** Select people you know on Facebook and twitter;
- Oata snooping: Select the part of sample that you prefer, ignore the rest
 - Learn more about the data snooping: http://data-snooping.martinsewell.com/

Outline	Random variable and Observation	Random Sample o oo	Statistic ● ○	Sampling Distribution O O	Exercises
Definition					

Definition of Statistic

- We call **statistic** any quantity whose value can be calculated from sample data. That means a statistic is a function of random variables from our random sample X_1, \ldots, X_n .
- Do you think a statistic should be denoted with an upper case letter or a lower case letter?

Outline	Random variable and Observation	Random Sample o oo	Statistic O	Sampling Distribution o o o	Exercises
Examples					
_					

Examples

A statistic is also a random variable.

1 Sample Mean:
$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

2 Sample Variance:
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

3 Other examples: sample quantiles, sample standard deviation, etc.

- < ≣ >

A (1) > A (2)

Outline	Random variable and Observation	Random Sample o oo	Statistic 0 0	Sampling Distribution • •	Exercises
Definition					
Sam	oling Distribution				

• The probability distribution of a statistic is called **sampling distribution** to emphasize the fact that it describes how the statistic varies from one random sample to another.

Outline	Random variable and Observation	Random Sample	Statistic	Sampling Distribution	Exercises
	000				
				•	

Finding Sampling Distributions

How we find the sampling distribution of a statistic

- Using Probability Rules. (e.g 6.2)
- Simulation Experiments.
- Using known theorems (which is considered an extension of the first case). (section 6.3,6.4)

Outline	Random variable and Observation	Random Sample o oo	Statistic 0 0	Sampling Distribution	Exercises
Example					
_					

Example 6.2 page 282

Example 1: Suppose (X_1, X_2) is a random sample of size 2 and each of them has the following probability distribution:

Table: Probability distribution of $X_1(X_2)$

X	40	45	50
p(x)	0.2	0.3	0.5

- What is the probability distribution of $\bar{X} = \frac{X_1 + X_2}{2}$?
- What is the probability distribution of S²?

Outline	Random variable and Observation	Random Sample 0 00	Statistic ○ ○	Sampling Distribution O O O	Exercises

- Section 6.1 page 290
 - Hw1(to be continued) 2, 3

590

臣

< ∃ >

< 🗗 🕨