Outline Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distribution
	000 0 000		

Chapter 6 - Lecture 2 The distribution of a linear combination

Yuan Huang

January 11th, 2013

Chapter 6 - Lecture 2 The distribution of a linear combination

Yuan Huang

3

Outline	Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distribution
		000 0 000		

1 Definition of linear combination

2 General Populations

For general sample Special case for iid random sample Examples

3 Normal Populations

For general normal random variables For iid normal random sample

Introduce another tool to derive distribution

Normal case Poisson case

5 Homework

Outline Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distribution
	000 0 000		

Definition of Linear Combination

We have

- a random sample X_1, X_2, \ldots, X_n
- *n* constants a_1, \ldots, a_n

then the random variable

$$Y = a_1 X_1 + \ldots + a_n X_n = \sum_{i=1}^n a_i X_i \tag{1}$$

is called a **linear combination of** X's.

Outline Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distribution
	000 0 000		

Many statistics are linear functions of the sample data X_1, \ldots, X_n :

$$Y = a_1 X_1 + \ldots + a_n X_n = \sum_{i=1}^n a_i X_i.$$

$$\mathbf{1} \ \bar{X} = \frac{1}{n} X_1 + \ldots + \frac{1}{n} X_n;$$

By learning properties of linear combination, we can get a clearer view of how a statistic is distributed.

Outline	Definition of linear combination	General Populations O O O O O O O O O O O O O O O O O O O	Normal Populations O O	Introduce another tool to derive distributio O
For gene	ral sample			

Proposition 1

$$E(\sum_{i=1}^{n} a_i X_i) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n).$$

- This proposition holds no matter whether the X_i's are independent or not.
- Interpretation, the sampling distribution of $\sum_{i=1}^{n} a_i X_i$ has mean $a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$.
- In most general case, each X_i has expectation μ_i , then

$$E(\sum_{i=1}^n a_i X_i) = a_1 \mu_1 + a_2 \mu_2 + \ldots + a_n \mu_n$$

Outline	Definition of linear combination	General Populations ○ ○ ○ ○	Normal Populations O O	Introduce another tool to derive distribution O O
For gen	eral sample			

Practice: If $E(X_1) = 2$ and $E(X_2) = 3$ and $E(X_3) = 1$ then

•
$$E(X_1 - X_2)?$$

•
$$E(X_1 + X_2 - X_3)?$$

• $E(\bar{X})$?

DQC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	e Definition of linear combination	General Populations	Normal Populations O O	Introduce another tool to derive distributio O
For ge	neral sample			

Proposition 2:

$$V(a_1X_1+\ldots+a_nX_n)=\sum_{i=1}^n\sum_{j=1}^na_ia_jCov(X_i,X_j).$$

590

æ

▲ □ > < □ >

< ∃⇒

Outline	Definition of linear combination	General Populations	Normal Populations O O	Introduce another tool to derive distributio ° °
For gene	ral sample			

Proposition 2:

$$V(a_1X_1+\ldots+a_nX_n)=\sum_{i=1}^n\sum_{j=1}^na_ia_jCov(X_i,X_j).$$

Note that

1
$$Cov(X_i, X_i) = V(X_i);$$

2 If X_i and X_j are independent, $Cov(X_i, X_j) = 0$ (uncorrelated);

< ≣ >

A ■

Outline	Definition of linear combination	General Populations	Normal Populations O O	Introduce another tool to derive distribution
For gene	ral sample			

Proposition 2:

$$V(a_1X_1+\ldots+a_nX_n)=\sum_{i=1}^n\sum_{j=1}^na_ia_jCov(X_i,X_j).$$

Note that

1
$$Cov(X_i, X_i) = V(X_i);$$

2 If X_i and X_j are independent, $Cov(X_i, X_j) = 0$ (uncorrelated);

Corollary

If X_1, \ldots, X_n are mutually independent, then

$$V(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 V(X_i).$$

a A

Special case for iid random sample

We have a random sample $X_1, X_2, ..., X_n$ from a distribution with mean μ and variance σ^2 , and let $Y = \sum_{i=1}^n a_i X_i$ then:

$$u_{\boldsymbol{Y}} = \sum_{i=1}^{n} a_i \mu = \mu \sum_{i=1}^{n} a_i$$

and

$$\sigma_Y^2 = \sum_{i=1}^n a_i^2 \sigma^2 = \sigma^2 \sum_{i=1}^n a_i^2$$

æ

- < ∃ >

Outline Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distributio
	000		
	000		
Examples			

Example

If we have X_1 and X_2 that X_1 has mean μ_1 and variance σ_1^2 , X_2 has mean μ_2 and variance σ_2^2

1 What is $E(X_1 + X_2)$ and $V(X_1 + X_2)$, when

- If X₁, X₂ are independent:
- If X₁, X₂ are dependent:

2 What is $E(X_1 - X_2)$ and $V(X_1 - X_2)$, when

- If *X*₁, *X*₂ are independent:
- If X₁, X₂ are dependent:

Outline	Definition of linear combination	General Populations	Normal Populations O O	Introduce another tool to derive distributio O O
Example	25			

Chapter 6 - Lecture 2 The distribution of a linear combination

Yuan Huang

590

æ

・ロト ・回 ト ・ヨト ・ヨト

Outline Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distribution
	000		
	000		
Examples			

Example 6.11 page 301

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at \$2.20, \$2.35, \$2.50 per gallon, respectively. Let X_1 , X_2 and X_3 denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X'_is are independent with $\mu_1 = 1000$, $\mu_2 = 500$, $\mu_3 = 300$, $\sigma_1 = 100$, $\sigma_2 = 80$ and $\sigma_3 = 50$. The revenue from sales is $Y = 2.2X_1 + 2.35X_2 + 2.5X_3$.

- **1** What is E(Y)?
- 2 What is V(Y)?

For general normal random variables

Proposition 3

When X_1, \ldots, X_n are independent and normally distributed, suppose $X_i \sim N(\mu_i, \sigma_i^2)$, then for any linear combination $Y = a_1 X_1 + \ldots + a_n X_n = \sum_{i=1}^n a_i X_i$,

$$Y \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2).$$

Remark. This proposition is true ONLY for Normal Random Variables.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline	Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distribution
		000		
			•	
		000		

For iid normal random sample

Corollary

When X_1, \ldots, X_n are *i.i.d* and $X_i \sim N(\mu, \sigma^2)$, then for any linear combination $Y = a_1 X_1 + \ldots + a_n X_n = \sum_{i=1}^n a_i X_i$,

$$Y \sim \mathcal{N}((\sum_{i=1}^n a_i)\mu, (\sum_{i=1}^n a_i^2)\sigma^2).$$

Outline Definit	ion of linear combination	General Populations	Normal Populations	Introduce another tool to derive distributio
		000 0 000		

Introduce another tool to derive distribution

Proposition 4

Let X_1, X_2, \ldots, X_n independent random variables with mgfs $M_{X_i}(t)$ and Y is the linear combination defined in equation (1), then

$$M_Y(t) = M_{X_1}(a_1t) \times M_{X_2}(a_2t) \times \ldots \times M_{X_n}(a_nt)$$
(2)

Outline Definition of linear combination	General Populations	Normal Populations 0 0	Introduce another tool to derive distribution • ·
Normal case			
Normal case			

X and Y are independent Normal random variable. X has mean μ_1 and variance σ_1 . Y has mean μ_2 and variance σ_2 . What's the distribution of X + Y?

Outline Definition of linear combination	General Populations	Normal Populations O O	Introduce another tool to derive distributio •
Poisson case			
Poisson case			

X and Y are independent Poisson random variable. X has mean ν and Y has mean λ . What's the distribution of X + Y? (Example 6.16 page 306)

< 3 b

Outline	Definition of linear combination	General Populations	Normal Populations	Introduce another tool to derive distributio
		000		
		000		

Homework for Section 6.3: 33, 34, 44.

HW1

- Due next Jan. 18
- Hand-in: (Sec 6.1 P290) 2, 3 ; (Sec 6.3 P306) 33, 34, 44
- Not-Hand-in: Reading
 - 1 Book sections 6.1, 6.3
 - **2** [Reading 1] under Readings tag of course website.