Chapter 6 - Lecture 2
 The distribution of a linear combination

Yuan Huang

January 11th, 2013
(1) Definition of linear combination
(2) General Populations For general sample Special case for iid random sample Examples
(3) Normal Populations

For general normal random variables
For iid normal random sample
(4) Introduce another tool to derive distribution Normal case
Poisson case
(5) Homework

Definition of Linear Combination

We have

- a random sample $X_{1}, X_{2}, \ldots, X_{n}$
- n constants a_{1}, \ldots, a_{n}
then the random variable

$$
\begin{equation*}
Y=a_{1} X_{1}+\ldots+a_{n} X_{n}=\sum_{i=1}^{n} a_{i} X_{i} \tag{1}
\end{equation*}
$$

is called a linear combination of X 's.

Many statistics are linear functions of the sample data X_{1}, \ldots, X_{n} :

$$
Y=a_{1} X_{1}+\ldots+a_{n} X_{n}=\sum_{i=1}^{n} a_{i} X_{i}
$$

(1) $\bar{X}=\frac{1}{n} X_{1}+\ldots+\frac{1}{n} X_{n}$;

By learning properties of linear combination, we can get a clearer view of how a statistic is distributed.

For general sample

Proposition 1

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)
$$

- This proposition holds no matter whether the X_{i} 's are independent or not.
- Interpretation, the sampling distribution of $\sum_{i=1}^{n} a_{i} X_{i}$ has mean $a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$.
- In most general case, each X_{i} has expectation μ_{i}, then

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=a_{1} \mu_{1}+a_{2} \mu_{2}+\ldots+a_{n} \mu_{n}
$$

Practice: If $E\left(X_{1}\right)=2$ and $E\left(X_{2}\right)=3$ and $E\left(X_{3}\right)=1$ then

- $E\left(X_{1}-X_{2}\right)$?
- $E\left(X_{1}+X_{2}-X_{3}\right)$?
- $E(\bar{X})$?

For general sample

Proposition 2:

$$
V\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

For general sample

Proposition 2:

$$
V\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Note that
(1) $\operatorname{Cov}\left(X_{i}, X_{i}\right)=V\left(X_{i}\right)$;
(2) If X_{i} and X_{j} are independent, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ (uncorrelated);

For general sample

Proposition 2:

$$
V\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Note that
(1) $\operatorname{Cov}\left(X_{i}, X_{i}\right)=V\left(X_{i}\right)$;
(2) If X_{i} and X_{j} are independent, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ (uncorrelated);

Corollary
If X_{1}, \ldots, X_{n} are mutually independent, then

$$
V\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} V\left(X_{i}\right)
$$

Special case for iid random sample

We have a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a distribution with mean μ and variance σ^{2}, and let $Y=\sum_{i=1}^{n} a_{i} X_{i}$ then:

$$
\mu_{Y}=\sum_{i=1}^{n} a_{i} \mu=\mu \sum_{i=1}^{n} a_{i}
$$

and

$$
\sigma_{Y}^{2}=\sum_{i=1}^{n} a_{i}^{2} \sigma^{2}=\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}
$$

Example

If we have X_{1} and X_{2} that X_{1} has mean μ_{1} and variance σ_{1}^{2}, X_{2} has mean μ_{2} and variance σ_{2}^{2}
(1) What is $E\left(X_{1}+X_{2}\right)$ and $V\left(X_{1}+X_{2}\right)$, when

- If X_{1}, X_{2} are independent:
- If X_{1}, X_{2} are dependent:
(2) What is $E\left(X_{1}-X_{2}\right)$ and $V\left(X_{1}-X_{2}\right)$, when
- If X_{1}, X_{2} are independent:
- If X_{1}, X_{2} are dependent:

Examples

Example 6.11 page 301

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at $\$ 2.20, \$ 2.35$, $\$ 2.50$ per gallon, respectively. Let X_{1}, X_{2} and X_{3} denote the amounts of these grades purchased (gallons) on a particular day. Suppose the $X_{i}^{\prime} s$ are independent with $\mu_{1}=1000, \mu_{2}=500$, $\mu_{3}=300, \sigma_{1}=100, \sigma_{2}=80$ and $\sigma_{3}=50$. The revenue from sales is $Y=2.2 X_{1}+2.35 X_{2}+2.5 X_{3}$.
(1) What is $E(Y)$?
(2) What is $V(Y)$?

For general normal random variables

Proposition 3

When X_{1}, \ldots, X_{n} are independent and normally distributed, suppose $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, then for any linear combination $Y=a_{1} X_{1}+\ldots+a_{n} X_{n}=\sum_{i=1}^{n} a_{i} X_{i}$,

$$
Y \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

Remark. This proposition is true ONLY for Normal Random Variables.

For iid normal random sample

Corollary
When X_{1}, \ldots, X_{n} are i.i.d and $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then for any linear combination $Y=a_{1} X_{1}+\ldots+a_{n} X_{n}=\sum_{i=1}^{n} a_{i} X_{i}$,

$$
Y \sim N\left(\left(\sum_{i=1}^{n} a_{i}\right) \mu,\left(\sum_{i=1}^{n} a_{i}^{2}\right) \sigma^{2}\right) .
$$

Introduce another tool to derive distribution

Proposition 4

Let $X_{1}, X_{2}, \ldots, X_{n}$ independent random variables with mgfs $M_{X_{i}}(t)$ and Y is the linear combination defined in equation (1), then

$$
\begin{equation*}
M_{Y}(t)=M_{X_{1}}\left(a_{1} t\right) \times M_{X_{2}}\left(a_{2} t\right) \times \ldots \times M_{X_{n}}\left(a_{n} t\right) \tag{2}
\end{equation*}
$$

Normal case

X and Y are independent Normal random variable. X has mean μ_{1} and variance σ_{1}. Y has mean μ_{2} and variance σ_{2}. What's the distribution of $X+Y$?

Poisson case

X and Y are independent Poisson random variable. X has mean ν and Y has mean λ. What's the distribution of $X+Y$? (Example 6.16 page 306)

Homework for Section 6.3: 33, 34, 44.

HW1

- Due next Jan. 18
- Hand-in: (Sec 6.1 P290) 2, 3 ; (Sec 6.3 P306) 33, 34, 44
- Not-Hand-in: Reading
(1) Book sections 6.1, 6.3
(2) [Reading 1] under Readings tag of course website.

