Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
			000	

Chapter 6 - Lecture 3 The distribution of the sample mean

Yuan Huang

January 14th, 2013

Chapter 6 - Lecture 3 The distribution of the sample mean

Yuan Huang

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	00	00	000	
			000	

1 General Properties of Sample Mean

Mean and Variance Asymptotic properties: Law of Large Numbers

2 For Normal Population (Exactly)

Distribution of Sample Mean Example

For general populations (asymptotically)
 Central Limit Theorem
 Examples
 Applications

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	00	00	000	
			000	

General Properties of Sample Mean

Chapter 6 - Lecture 3 The distribution of the sample mean

Yuan Huang

DQC

æ

< ∃⇒

・ロト ・回ト ・ヨト

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	• <u>•</u> •	00	000	
			000	

General: Mean and variance of Sample Mean

A random sample $X_1, X_2, ..., X_n$ from a distribution with mean μ and variance σ^2 , then the distribution of the sample mean \bar{X} has:

1 mean
$$E(\bar{X}) = \mu_{\bar{X}} = \mu$$

2 variance $V(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$

It means:

Mean and Variance

- The sampling distribution of \bar{X} is centered precisely at the mean of the population from which the sample has been selected.
- 2 The sampling distribution of \bar{X} becomes more concentrated about μ as the sample size *n* increases.

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	○ ○○	00 0	000 0 000	

Mean and Variance

Law of Large Numbers

$$ar{X}
ightarrow$$
?, as $n
ightarrow \infty$

Chapter 6 - Lecture 3 The distribution of the sample mean

Yuan Huang

DQC

Э

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho		
	00	00	000			
	●O					
			000			
•						

Law of Large Numbers (LLN)

Thm: If X_1, \ldots, X_n is a random sample from a distribution with mean μ and variance σ^2 , then as $n \to \infty$, \bar{X}_n converges to μ :

- In mean square $E[(ar{X}-\mu)^2]
 ightarrow 0$
- In probability $P(|ar{X}-\mu|\geq\epsilon)
 ightarrow 0$

Remarks: LLN is one theoretical support of using large sample size - as sample size goes large the sample estimate becomes accurate.

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho	
	00	00	000		
	00				
			000		
Asymptotic properties: Law of Large Numbers					

For weak law:

Easy way to remember: The chance that \bar{X} is far away from μ is going to 0 as sample size is growing!

[Proof]: By Chebyshev's Inequality,

$$\begin{split} \mathsf{P}(|\bar{X} - \mu| \geq \epsilon) &= \mathsf{P}\left(|\bar{X} - \mu| \geq \left(\epsilon \frac{\sqrt{n}}{\sigma}\right) \frac{\sigma}{\sqrt{n}}\right) \\ &\leq \frac{1}{\left(\epsilon \frac{\sqrt{n}}{\sigma}\right)^2} = \frac{\sigma^2}{n\epsilon^2} \end{split}$$

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
		•0		
	00			
			000	
Distribu	tion of Sample Mean			

Distribution of Sample Mean for Normal distribution

Chapter 6 - Lecture 3 The distribution of the sample mean

Yuan Huang

DQC

æ

イロン イヨン イヨン イヨン

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	00	00	000	
			000	

Distribution of Sample Mean

Distribution of Sample Mean for Normal distribution

A random sample $X_1, X_2, ..., X_n$ from a normal distribution with mean μ and variance $\sigma^2 (X_i \sim N(\mu, \sigma^2))$ then the sample mean \bar{X} has a sampling distribution which is :

- normally distributed (by prop 3 from Lec 6.2)
- with mean $\mu_{ar{X}}=\mu$ (by prop 1 from Lec 6.2)

• with variance
$$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$$
 (by prop 2 from Lec 6.2)

In short as:
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Outline General Properties of Sample Mean	For Normal Population (Exactly) ○○ ●	For general populations (asymptotically) 000 000	Но
Example			

Exercise 6.19

[6.19] Suppose the sediment density of a randomly selected specimen from a certain region is normally distributed with mean 2.65 and standard deviation 0.85. If a random sample of 25 specimen is selected, what is the probability that sample mean is at most 3.00 ?

00	Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
00 00 000				000	
00 0 0		00			
000				000	

Asymptotic distribution of \bar{X} for general populations

Central Limit Theorem

Chapter 6 - Lecture 3 The distribution of the sample mean

Yuan Huang

Э

イロン 不同と 不同と 不同と

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
			000	
	00			
			000	

Central Limit Theorem (CLT)

Thm:. If X_1, \ldots, X_n is a random sample with mean μ and variance σ^2 , then as $n \to \infty$, the limiting distribution of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ is standard normal, written as

$$rac{\sqrt{n}(ar{X}_n-\mu)}{\sigma}
ightarrow_d N(0,1).$$

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
			000	
	00			
			000	

Central Limit Theorem (CLT)

Thm:. If X_1, \ldots, X_n is a random sample with mean μ and variance σ^2 , then as $n \to \infty$, the limiting distribution of $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ is standard normal, written as

$$\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}\to_d N(0,1).$$

Comments: converge in distribution as converge in cdf.

1
$$\lim_{n\to\infty} P(\sqrt{n}(\bar{X}_n - \mu)/\sigma \le z) \to \Phi(z)$$
 for any $z \in \Re$;
2 $\lim_{n\to\infty} P((T_o - n\mu)/(\sqrt{n}\sigma) \le z) \to \Phi(z)$ for any $z \in \Re$;

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Hoi
			000	
	00			
			000	

Central Limit Theorem - CLT

A random sample $X_1, X_2, ..., X_n$ from ANY distribution. The sample mean $\overline{X} \ \overline{X}$ is asymptotically normally distributed.

[Think:] Asymptotically means when the sample size n is large. But how large is large?

I ∃ ≥

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	00	00	000	
	00		0 000	

Central Limit Theorem - CLT

A random sample $X_1, X_2, ..., X_n$ from ANY distribution. The sample mean $\overline{X} \ \overline{X}$ is asymptotically normally distributed.

[Think:] Asymptotically means when the sample size n is large. But how large is large?

[Rule of Thumb :] If n > 30 the Central Limit Theorem can be used.

I ∃ ►

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically) ○○○ ● ○○○	Ho
Example	25			

Example 6.8 page 294

[e.g. 6.8] When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean 4.0 g and standard deviation 1.5 g. If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity \bar{X} is between 3.5g and 3.8g ?

Outline General Properties of Sample Me	an For Normal Population (Exactly)	For general populations (asymptotically)	Но
Augliesticus		000	

Other Applications of CLT (1)

Justify normal approximation of Binomial Distribution (we did this in Stat 318 but we didn't justify it using CLT)

Let $X \sim \text{Binomial}(n, p)$, if $np \geq 10$ and $nq \geq 10$, then

$$P(X \le x) = \Phi(rac{x - np + 0.5}{\sqrt{npq}})$$

Yuan Huang

Chapter 6 - Lecture 3 The distribution of the sample mean

Outline (General Properties of Sample Mean 00 00	For Normal Population (Exactly)	For general populations (asymptotically) ○○○ ○●○	Но
Applicatio	ons			

[6.20] The first assignment in a statistical computing class involves running a short program. If past experience indicates that 40% of all students will make no programming errors. compute the approximate probability that in a class of 50 students, at leas 25 will make no errors.

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	00	00	000	
	00			
			000	

Applications

Other Applications of CLT (2)

Let $X_1, X_2, ..., X_n$ be random sample from a distribution for which only positive values are possible ($P(X_i > 0) = 1$). Then if *n* is sufficiently large, the product $Y = X_1 X_2 \cdot ... \cdot X_n$ has approximately a lognormal distribution.

Outline	General Properties of Sample Mean	For Normal Population (Exactly)	For general populations (asymptotically)	Ho
	00	00	000	
	00			
			000	

Homework for this session

Part of HW 2:

- Section 6.2 page 298 11, 12, 14
 - Exercises $11(E(\bar{X}), V(\bar{X}))$
 - Exercises 12 (distribution of \bar{X} for normal distn)
 - Exercises 14 (CLT)

< ∃ >