Outline	Chi-square 00000 000	t - distribution 0 00	F distribution o ooo	Homework for this session

Chapter 6 - Lecture 4 Distributions based on a normal random sample

Yuan Huang

January 17th, 2013

Chapter 6 - Lecture 4 Distributions based on a normal random sample

Yuan Huang

Outline	Chi-square 00000 000	t - distribution 0 00	F distribution 0 000	Homework for this session

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Chi-square	t - distribution O	F distribution	Homework for this session

1 Chi-square

Definition Distribution of Sample Variance

2 t - distribution Definition Problem

F distribution
 Definition
 Problem

≣ ▶

Outline	Chi-square ●○○○○	t - distribution 0 00	F distribution 0 000	Homework for this session
Definition				

Definition of Chi-square distribution

- Chi-square distribution is fully determined by one parameter called degree of freedom ν, denoted as χ²_ν.
- Chi-square distribution is a special case of Gamma distribution.

$$\chi^2_
u = \mathsf{Gamma}(
u/2,2)$$

• If
$$X \sim \chi^2_{
u}$$
, then the pdf of X is

$$f(x) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

Chapter 6 - Lecture 4 Distributions based on a normal random sample

Outline	Chi-square ○●○○○	t - distribution 0 00	F distribution 0 000	Homework for this session
Definition				

What is the connection with normal random variable ?

Chapter 6 - Lecture 4 Distributions based on a normal random sample

Yuan Huang

DQC

Э

イロン 不同と 不同と 不同と

Outline	Chi-square ○●○○○ ○○○	t - distribution 0 00	F distribution 0 000	Homework for this session
Definition				

What is the connection with normal random variable ?

Proposition

If
$$Z \sim \mathsf{N}(0,1)$$
, then $X = Z^2 \sim \chi_1^2$

Try!

- If given X ~ N(μ, σ²), can you define a random variable that follows chi-square distribution?
- If given random sample X_1, \ldots, X_n , can we define a random variable that follows chi-square distribution using \bar{X} ?

Outline	Chi-square ○○●○○ ○○○	t - distribution 0 00	F distribution 0 000	Homework for this session
Definition				

Proof:

Chapter 6 - Lecture 4 Distributions based on a normal random sample

æ

590

・ロト ・回ト ・ヨト ・ヨト

Outline	Chi-square ○○○●○ ○○○	t - distribution 0 00	F distribution o ooo	Homework for this session
Definition				

Properties of Chi-square distribution

1 If
$$X \sim \chi^2_{\nu}$$
, then $E(X) = \nu$;
2 If $X \sim \chi^2_{\nu}$, then $V(X) = 2\nu$;
3 If $X_1 \sim \chi^2_{\nu_1}$ and $X_2 \sim \chi^2_{\nu_2}$ and $X_1 \perp X_2$ then $X_1 + X_2 \sim \chi^2_{\nu_1 + \nu_2}$
4 If $X_3 = X_1 + X_2$, with $X_1 \sim \chi^2_{\nu_1}$, $X_3 \sim \chi^2_{\nu_3}$, $\nu_3 > \nu_1$ and $X_1 \perp X_2$ then $X_2 \sim \chi^2_{\nu_3 - \nu_1}$

Outline	Chi-square ○○○○● ○○○	t - distribution 0 00	F distribution ○ ○○○	Homework for this session
Definition				

Corollary

If Z_1, \ldots, Z_n are i.i.d and $Z_1 \sim N(0, 1)$, then $X = \sum_{i=1}^n Z_i^2 \sim \chi_n^2$.

Remark. This is an alternative definition of χ^2_ν when ν is an integer.

Outline	Chi-square	t - distribution	F distribution	Homework for this session
	00000			
	000			
Distribution of Sam	ple Variance			

Sample variance

- In previous lectures we have defined the sample mean X. If we have a random sample $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ then we have that $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- Now, we define the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Outline	Chi-square	t - distribution	F distribution	Homework for this session
	00000 000	0 00	0 000	
Distribution of Sample Variance				

Theorem: Let a random sample $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, then

1
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

2 \bar{X} and S^2 are independent
3 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

200

臣

・ロト ・回ト ・ヨト

Outline	Chi-square	t - distribution	F distribution	Homework for this session
	00000	0 00	0 000	
Distribution of Sam	ple Variance			

Scratch proof

Note that if X_1, \ldots, X_n are i.i.d with $X_1 \sim N(\mu, \sigma^2)$, then we have $\frac{X_1 - \mu}{\sigma}, \ldots, \frac{X_n - \mu}{\sigma}$ are i.i.d standard normal rv's. Also, $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\sigma^2}$ is really close to $\sum_{i=1}^n (\frac{X_i - \mu}{\sigma})^2$ To prove that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ we need the following two results:

- If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ is a random sample then $\bar{X} \perp S^2$.
- If $X_3 = X_1 + X_2$ with $X_1 \sim \chi^2_{\nu_1}$, $X_3 \sim \chi^2_{\nu_3}$, $\nu_3 > \nu_1$ and $X_1 \perp X_2$ then $X_2 \sim \chi^2_{\nu_3 \nu_1}$

• E • •

Outline	Chi-square 00000 000	t - distribution	F distribution 0 000	Homework for this session
Definition				

Definition of t - distribution

• If
$$Z \sim {\it N}(0,1)$$
, $X \sim \chi^2_{
m v}$ and $X \perp\!\!\!\perp Z$ then

$$T = rac{Z}{\sqrt{rac{X}{v}}} \sim t_v$$

- The above is called *t*-distribution with *v* degrees of freedom.
- It is also known as the "Student's t distribution"

Outline	Chi-square 00000 000	t - distribution ○ ●○	F distribution 0 000	Homework for this session
Problem				
Questior	า			

• If $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ a random sample, can you find the distribution of _

$$W = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

200

★ 문 ▶ 문

▲ □ > < □ >

Outline	Chi-square 00000 000	t - distribution ○ ○●	F distribution o ooo	Homework for this session
Problem				

Proposition

If X_1, \ldots, X_n are i.i.d with $X_1 \sim N(\mu, \sigma^2)$, then

$$\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}.$$

200

臣

< ≣ >

< 🗗 🕨

Outline	Chi-square 00000 000	t - distribution 0 00	F distribution ● ○○○	Homework for this session
Definition				

Definition of F distribution

• If
$$X_1 \sim \chi^2_{v_1}$$
, $X_2 \sim \chi^2_{v_2}$ and $X_1 \perp X_2$ then:

$$F = \frac{X_1}{\frac{V_1}{X_2}} \sim F_{v_1,v_2}$$

• The above is called *F* distribution with v_1 and v_2 degrees of freedom.

⊒ ⊳

Outline	Chi-square 00000 000	t - distribution 0 00	F distribution ○ ●○○	Homework for this session
Problem				
o				
Questic	n			

- If a random variable $U \sim t_v$ can you find the distribution of $V = U^2$?
- Suppose we have a random sample of size *m* from normal distribution N(μ₁, σ₁²), and an independent random sample of size *n* form normal distribution N(μ₂, σ₂²). Denote S₁² and S₂² as the sample variance from each group. What is the distribution of S₁²/σ₁²?

Outline	Chi-square 00000 000	t - distribution 0 00	F distribution ○ ○●○	Homework for this session
Problem				

Proposition

If X_1, \ldots, X_n are i.i.d with $X_1 \sim N(\mu, \sigma^2)$, then

$$\frac{n(\bar{X}_n-\mu)^2}{S^2}\sim F_{1,n-1}.$$

200

< 注→ 注

< 🗗 🕨

Outline	Chi-square 00000 000	t - distribution 0 00	F distribution ○ ○○●	Homework for this session
Problem				

Summary:

When X_1, \ldots, X_n are i.i.d normally distributed with mean μ and variance σ^2 , we have the following results:

1
$$\bar{X} \sim N(\mu, \sigma^2/n);$$

2 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1};$
3 \bar{X} and S^2 are independent;
4 $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1};$
5 $\frac{n(\bar{X}-\mu)^2}{S} \sim F_{1,n-1};$

Outline	Chi-square 00000 000	t - distribution 0 00	F distribution ○ ○○●	Homework for this session
Problem				

Summary:

When X_1, \ldots, X_n are i.i.d normally distributed with mean μ and variance σ^2 , we have the following results:

1
$$\bar{X} \sim N(\mu, \sigma^2/n);$$

2 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1};$
3 \bar{X} and S^2 are independent;
4 $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1};$
5 $\frac{n(\bar{X}-\mu)^2}{S^2} \sim F_{1,n-1}.$

We will come back to other properties of these distributions time by time.

Outline	Chi-square	t - distribution	F distribution	Homework for this session
	00000	0 00	0 000	

Homework for this session

Part of HW 2:

• Section 6.4 page 320 48, 50

E

< ≣ >