Overview of Chapter 7

Chapter 7 : Point Estimation

- 1 7.1 General Concepts and Criteria
- **2** 7.2 Methods of Point Estimation
- **3** 7.3 Sufficiency
- **4** 7.4 Information and Efficiency

In short, the goal of chapter 7 is to learn how to find and evaluate point estimators.

Outline	General concepts	Criteria to evaluate estimators 00 0000	Homework for this session

Chapter 7 - Lecture 1 General concepts and criteria

Yuan Huang

January 25, 2013

Chapter 7 - Lecture 1 General concepts and criteria

Outline	General concepts

1 General concepts

2 Criteria to evaluate estimators

Unbiased estimators Minimum Variance Unbiased Estimators Mean Square error

3 Homework for this session

Parameter versus Estimator

Parameter refers to a value that represents the whole population.

Examples:

- **1** Binary variable (Smoke or not, Female or Male) : Bernoulli(*p*);
- **2** Number of customers: Poisson (λ) ;
- **3** Waiting time for a bus: exponential (λ) ;
- **4** Many other cases: height, $N(\mu, \sigma^2)$;

Parameter versus Estimator

However, parameters are usually unknown. We need to estimate them ! (How?)

Examples:

- **1** Bernoulli(p): \hat{p} = sample proportion;
- **2** $N(\mu, \sigma^2)$: \bar{X}_n and S^2 ;

∢ ≣ ▶

Outline	General concepts	Criteria to evaluate estimators 00 00000 0	Homework for this session

Definitions

- A point estimate of parameter θ is a single number that can be regarded as a sensible value for θ.
- A point estimate is obtained by selecting a suitable statistic and computing its value from the given data. The selected statistic is called the **point estimator** of *θ*.
- Both the point estimate and point estimator of a parameter θ are denoted with $\hat{\theta}$.

Outline	General concepts	Criteria to evaluate estimators oo oooo o	Homework for this session

In these cases we give a number as an estimate, called **point estimate**. In terms of random variables, it's called a **point estimator**. An alternative is **interval estimator**, expressed by **confidence intervals**.(will be discussed in Chapter 8.)

Outline	General concepts	Criteria to evaluate estimators oo oooo o	Homework for this session

In these cases we give a number as an estimate, called **point estimate**. In terms of random variables, it's called a **point estimator**. An alternative is **interval estimator**, expressed by **confidence intervals**.(will be discussed in Chapter 8.)

- 1 Estimator: random variables, before you see the data;
- 2 Estimate: numbers, after you see the data;

- parameter : p
- point estimator: $\hat{p} = \text{sample proportion} = \frac{\sum_{i=1}^{10} X_i}{10}$

• parameter : p

• point estimator: $\hat{p} = \text{sample proportion} = \frac{\sum_{i=1}^{10} X_i}{10}$

If the data we collect have values 0, 1, 0, 1, 1, 0, 0, 0, 1, 0. Please give a point estimate of p.

• parameter : p

• point estimator: $\hat{p} = \text{sample proportion} = \frac{\sum_{i=1}^{10} X_i}{10}$

If the data we collect have values 0, 1, 0, 1, 1, 0, 0, 0, 1, 0. Please give a point estimate of p.

• point estimate:
$$\hat{p} = \frac{\sum_{i=1}^{10} x_i}{10} = 0.4$$

590

< ≣ ▶

• parameter : μ

• point estimator:
$$\hat{\mu} = \text{sample mean} = \frac{\sum_{i=1}^{5} X_i}{5}$$

- ∢ ≣ ▶

• parameter : μ

• point estimator:
$$\hat{\mu} = \text{sample mean} = \frac{\sum_{i=1}^{5} X_i}{5}$$

After you see the data: 0.347, 1.004, 1.189, 0.032, 2.012. Give a point estimate of $\mu.$

• parameter : μ

• point estimator: $\hat{\mu} = \text{sample mean} = \frac{\sum_{i=1}^{5} X_i}{5}$

After you see the data: 0.347, 1.004, 1.189, 0.032, 2.012. Give a point estimate of $\mu.$

• point estimate:
$$\hat{\mu} = \frac{\sum_{i=1}^{5} x_i}{5} = 0.9168$$

Outline	General concepts	Criteria to evaluate estimators oo oooo o	Homework for this session

Common Criteria includes:

Unbiasedness;

- 2 Minimum Variance among unbiased estimators;
- 3 Minimum Mean Square Error (MSE);

< ∃⇒

Unbiased estimators

Principle of Unbiased Estimation

bias of the point estimator $\hat{\theta}$:

$$\mathbf{E}\left(\hat{\theta}\right) - \theta$$

A point estimator $\hat{\theta}$ is said to be an **unbiased estimator** of θ if:

$$\mathbf{E}\left(\hat{\theta}\right) = \theta$$

< ≣ ▶

Unbiased estimators

Principle of Unbiased Estimation

bias of the point estimator $\hat{\theta}$:

$$\mathbf{E}\left(\hat{\theta}\right) - \theta$$

A point estimator $\hat{\theta}$ is said to be an **unbiased estimator** of θ if:

$$\mathbf{E}\left(\hat{\theta}\right) = \theta$$

Principle of Unbiased Estimation: To select those unbiased estimators.

→ ∃ →

Example 1. \bar{X} is an unbiased estimator of μ and S^2 is an unbiased estimator of σ^2 , under any distribution. (Example 7.6 for both editions)

- (1) You already did the proof for Hw2 #50
- **2** How about for general distribution?

Outline

Minimum Variance Unbiased Estimators

Proposition

Proposition

If the distribution is **continuous and symmetric**, then the median and the trimmed mean are also unbiased estimators of μ .

Comments: The above shows that unbiased estimators are not unique! If we have several unbiased estimators, which one is better?

< ∃ >

Outline

Minimum Variance Unbiased Estimators

Principle of Minimum Variance Unbiased Estimator (MVUE)

Among all estimators $\hat{\theta}$ that are unbiased we choose the one with the minimum variance. This estimator is called **minimum** variance unbiased estimator (MVUE) of θ .

(4) (5) (4) (5) (4)

< 17 ►

0	• • 4	lin	~
U	uu		e

Minimum Variance Unbiased Estimators

Example of MVUE

Theorem

If X_1, \ldots, X_n is a random sample from a normal distribution with parameters μ and σ^2 ($X_i \sim N(\mu, \sigma^2)$). Then the estimator $\hat{\mu} = \bar{X}$ is the MVUE for μ .

Image: Image:

Outline	General concepts	Criteria to evaluate estimators ○○ ○○●	Homework for this session
Minimum Vari	ance Unbiased Estimators		

Example 7.7 both editions.

Given X_1, \ldots, X_n is random sample from uniform $U(0, \theta)$. In order to estimate θ , there are two sensible estimators:

1
$$\hat{\theta}_1 = 2\bar{X}$$

2 $\hat{\theta}_2 = \frac{n+1}{n} \max\{X_1, \dots, X_n\}$

It can be shown that both $\hat{\theta_1}$ and $\hat{\theta_2}$ are unbiased estimators for θ . However,

$$V(\hat{\theta_1}) = \frac{\theta^2}{3n}$$
 $V(\hat{\theta_2}) = \frac{\theta^2}{n(n+2)}$

As long as sample size n > 1, $V(\hat{\theta}_1) > V(\hat{\theta}_2)$, hence by MVUE, $\hat{\theta}_2$ is preferable.

Mean Square error

Principle of Minimum MSE

Usually unbiased estimators are preferred and we try to find minimum variance estimator. However,

3

590

- < ≣ →

- - - E →

Mean Square error

Principle of Minimum MSE

Usually unbiased estimators are preferred and we try to find minimum variance estimator. However,

- 1 Many biased estimators are still accurate;
- Many unbiased estimators are not efficient variance is too large.

< ∃ >

Mean Square error

Principle of Minimum MSE

Usually unbiased estimators are preferred and we try to find minimum variance estimator. However,

- 1 Many biased estimators are still accurate;
- Many unbiased estimators are not efficient variance is too large.

Mean Square Error $MSE(\hat{\theta}) = V(\hat{\theta}) + Bias(\hat{\theta})^2 = E(\hat{\theta} - \theta)^2$.

- MSE of an estimator is small if and only if both the variance and the bias is small.
- Hence the Principle of Minimum MSE is a trade off between bias and accuracy.
- When $\hat{\theta}$ is unbiased, MSE is the same as variance.

Sac

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Homework for this session

HW 3: Due Feb 1

- Reading: Book session (1st) P326-335 ; (2nd) P332-342 (before More complications)
- Review problems in Hw1 and Qz1.
- Hand-in:
 - (1st) Page 342 8,10 ; (2nd) Page 348 8, 10
 - Redo a self-selected question which you did not get full score in Hw1. If you have full score in Hw1, you can skip this.
 - Given Normal distribution N(μ, 1), we want to estimate the μ. Suppose we get the random sample denoted X₁,..., X_n. Both X₁ and X̄ are sensible estimators for μ. Which one is preferable? What criterion do you use?