Maximum	Likelihood	Estimators
0000		
00		

Chapter 7 - Lecture 2 (2) Maximum Likelihood Estimator

Yuan Huang

Feb 1, 2013

Chapter 7 - Lecture 2 (2) Maximum Likelihood Estimator

Yuan Huang

Maximum	Likelihood	Estimators
0000		
00		

Definition

- For Bernoulli population, if you have two options: p = 0.2 and p = 0.8. The data you collect : 0, 1, 0, 0, 1, 0, 0, 0, 1, 0. Which value of p will you choose?
- 2 For Normal population $N(\mu, 0.5^2)$, if you have two options : $\mu = -5$ and $\mu = 5$. The data you collect: -4.5, -5.5, -5.1, -3.9, -6.1, -6.5, -5.3, -4.9, -4.7, -5.1. Which value of μ will you choose?

Maximum Likelihood Estimators	Exercises
0000	
0 00	
0 0	
Definition	

Maximum Likelihood Estimation: To select the parameter that makes the event mostly likely to occur.

Think: How to measure the "likely" ?

< ∃ >

Definition

Likelihood Function

If the pdf (pmf) function in the population is $f(X, \theta)$, and X_1, \ldots, X_n is a random sample from the population. Then the likelihood function $L(\theta)$ is

$$L(\theta) = f(X_1, \theta) \cdot f(X_2, \theta) \cdot \ldots \cdot f(X_n, \theta) = \prod_{i=1}^n f(X_i, \theta).$$

Comments: Likelihood function represents how likely an event (a sample) will occur under distribution $f(X, \theta)$.

Maximum I	Likelihood Estimators			
0000				
00				
Definition				

Maximum Likelihood Estimator:

Definition

Maximum Likelihood Estimator: $\hat{\theta} = \arg \max L(\theta)$, that is, $L(\hat{\theta}) = \max L(\theta)$.

Exercises

Invariance Principle

Invariance Principle of MLE's

If we have $\hat{\theta}_1, \ldots, \hat{\theta}_m$ are MLE for parameters $\theta_1, \ldots, \theta_m$. If $h(\theta_1, \ldots, \theta_m)$ is any function of $\theta_1, \ldots, \theta_m$. $\rightarrow h(\hat{\theta}_1, \ldots, \hat{\theta}_m)$ is MLE for $h(\theta_1, \ldots, \theta_m)$

∃ >

Large sample behavior of the MLE's

Under mild assumptions on the joint distribution of the sample, When the sample size is large,

- **1** $\hat{\theta}_{\text{MLE}}$ is close to θ (consistent)
- **2** $\hat{\theta}_{MLE}$ is approximately unbiased $(E(\hat{\theta}_{MLE}) \approx \theta)$
- (3) $\hat{\theta}_{\rm MLE}$ has variance that is nearly as small as can be achieved by any unbiased estimator.

Step by step procedure on how to find MLE estimators

- **Step 1**: Find the likelihood function $L(\theta; x) = \prod_{i=1}^{n} f(X_i, \theta)$.
- **Step 2**: Find the natural logarithm of the likelihood function $l(\theta) = l(\theta; x) = \log L(\theta; x)$.
- **Step 3**: Take a derivative of $l(\theta)$ for each of the parameter. (If you have *m* parameters you need *m* derivatives).
- **Step 4**: Equalize each of the derivative with 0.
- **Step 5**: Solve the equations to find solutions. The solutions are the MLE estimators for the parameters.

Examples

[Example 7.17] Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with parameter λ such that $f(x) = \lambda e^{-\lambda x}$. Find the MLE for λ .

3

DQC

<ロ> (日) (日) (日) (日) (日)

Maximum	Likelihood	Estimators	
0000			
00			
Examples			

[Example 7.18] Let $X_1, X_2, ..., X_n$ be a random sample from normal distribution $N(\mu, \sigma^2)$. Find the MLE for μ and σ^2 .

Example 7.23

Suppose the waiting time for a bus is uniformly distributed on $[0, \theta]$ and the results x_1, \ldots, x_n has the density $f(x; \theta) = \frac{1}{\theta}$ for $0 \le x \le \theta$ and 0 otherwise.

< 🗇 🕨

- < ≞ ≻ < ≞ ≻

Maximum	Likelihood	Estimators
0000		
00		

Homework 4

Uploaded under " Assignments " TAG.

DQC

æ

- < ≣ →

・ロト ・回ト ・ヨト