Chapter 7 - Lecture 2 (1) Method of Moments

Yuan Huang

Jan 30, 2013

< A

590

Yuan Huang

3

Chapter 7 - Lecture 2 (1) Method of Moments

Definitions

Population moments and Sample moments

Let X_1, \ldots, X_n be a random sample from any distribution f(x).

• The *k*th **population moment** :

 $E(X^k)$

• The *k*th sample moment :

$$\frac{1}{n}\sum_{i=1}^n X_i^k$$

< ∃ >

Definitions

Moment estimator

Let X_1, \ldots, X_n be a random sample from any distribution f(x) which has *m* unknown parameters $\theta_1, \ldots, \theta_m$.

Definition

The **moment estimators** $\hat{\theta}_1, \ldots, \hat{\theta}_m$ are obtained by equating the first *m* sample moments to the corresponding *m* population moments and then solve for $\theta_1, \ldots, \theta_m$.

- 1. Identify how many parameters we need to estimate. (Let's say *m*).
- 2. Find the first *m* population moments:

$$E(X), E(X^2) \dots, E(X^m)$$

3. Find the first *m* sample moments:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}, \quad \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}, \ldots, \quad \frac{1}{n}\sum_{i=1}^{n}X_{i}^{m}$$

4. Equalize each of the population moments to the corresponding sample moment.

$$E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$E(X^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$
$$\dots$$
$$E(X^m) = \frac{1}{n} \sum_{i=1}^{n} X_i^m$$

5. The solutions for the above equations are the moment estimators for the parameters.

Chapter 7 - Lecture 2 (1) Method of Moments

Example 1

Let X_1, \ldots, X_n be random sample from Exponential(λ) such that $f(x) = \lambda e^{-\lambda x}$ for x > 0

Given E(X) = 1/λ, find the moment estimator for λ.
If x₁ = 3, x₂ = 7, x₃ = 5, what is the estimate for λ?

• E •

Example 1 (Sol)

- **1**. The only parameter is $\lambda \rightarrow$ we need to find one equation.
 - 2. The population first moment is given as $E(X) = 1/\lambda$.
 - 3. The sample first moment is $\frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$.
 - 4. Let population 1^{st} moment = sample 1^{st} moment $\rightarrow E(X) = \bar{X}$
 - 5. Solve and get $1/\hat{\lambda} = \bar{X} \to \hat{\lambda} = \frac{1}{\bar{X}_n}$
- **2** Plug in the observations \rightarrow estimate $\hat{\lambda} = \frac{1}{5}$

Example 2

Let X_1, \ldots, X_n be random sample from Gamma (α, β) such that

$$f(x) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha - 1} e^{-eta x} \quad \forall x \ge 0$$

- **(**) Given $E(X) = \alpha\beta$ and $E(X^2) = \beta^2(\alpha + 1)\alpha$, find the moment estimator for α, β .
- **2** If we have observations 152, 115, 109, 94, 88, 137, 152, 77, 160, 165, 125, 40, 128, 123, 136, 101, 62, 153, 83, 69, what are the estimates for α, β ?

Example 2 (Sol)

- **1**. We have two parameters $\alpha, \beta \rightarrow$ need two equations.
 - 2. The fist two population moments are given as

$$E(X) = \alpha \beta$$
 and $E(X^2) = \beta^2(\alpha + 1)\alpha$.

3. The fist two sample moments are

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\bar{X}$$
 and $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$

4. Let population moments = corresponding sample moments

$$ar{X} = lphaeta, \qquad rac{1}{n}\sum_{i=1}^n X_i^2 = eta^2(lpha+1)lpha$$

5. Solve and get

$$\hat{\alpha} = \frac{\bar{X}^2}{\frac{1}{n}\sum X_i^2 - \bar{X}^2}, \qquad \hat{\beta} = \frac{\frac{1}{n}\sum X_i^2 - \bar{X}^2}{\bar{X}}$$

Example 2 (Sol)

2 If we have observations 152, 115, 109, 94, 88, 137, 152, 77, 160, 165, 125, 40, 128, 123, 136, 101, 62, 153, 83, 69, then calculate $\bar{X} = 113.5$ and $\frac{1}{n} \sum_{i=1}^{n} X_i^2 = 14087.8$ Plug the values into $\hat{\alpha} = \frac{\bar{X}^2}{\frac{1}{n} \sum X_i^2 - \bar{X}^2}$, $\hat{\beta} = \frac{\frac{1}{n} \sum X_i^2 - \bar{X}^2}{\bar{X}}$. • The estimate for α is $\hat{\alpha} = \frac{113.5^2}{\frac{14087.8 - 113.5^2}{113.5}} = 10.7$ • The estimate for β is $\hat{\beta} = \frac{\frac{14087.8 - 113.5^2}{113.5}} = 10.6$

R code for calculation (see 7.14 under Tag computation)

Example 3

Let X_1, \ldots, X_n be random sample from Generalized negative binomial (r, p).

- Given E(X) = r(1-p)/p and $E(X^2) = r(1-p)/p^2$, find the moment estimator for r, p.
- 2 If we have the following table of observations

Goals	0	1	2	3	4	5	6	7	8	9	10
Frequency	29	71	82	89	65	45	24	7	4	1	3

What are the estimates for r, p?

Example 3 (Sol)

1. We have two parameters $r, p \rightarrow$ need two equations.

2. The fist two population moments are given as

$$E(X) = r(1-p)/p$$
 and $E(X^2) = r(1-p)/p^2$.

3. The fist two sample moments are

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\bar{X}$$
 and $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$

4. Let population moments = corresponding sample moments

$$\bar{X} = r(1-p)/p, \qquad \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = r(1-p)/p^{2}$$

5. Solve and get

$$\hat{p} = \frac{\bar{X}}{\frac{1}{n}\sum X_i^2 - \bar{X}^2}, \qquad \hat{r} = \frac{\bar{X}^2}{\frac{1}{n}\sum X_i^2 - \bar{X}^2 - \bar{X}}$$

Example 3 (Sol)

2 If we have observations

Goals	0	1	2	3	4	5	6	7	8	9	10
Frequency	29	71	82	89	65	45	24	7	4	1	3

Note that this is a frequency table, with total sample size = 29 + 71 + 82 + 89 + 65 + 45 + 24 + 7 + 4 + 1 + 3 = 420. Calculate $\bar{X} = 2.98$ and $\frac{1}{n} \sum_{i=1}^{n} X_i^2 = 12.4$ Plug the values into $\bar{X} = r(1-p)/p$, $\frac{1}{n} \sum_{i=1}^{n} X_i^2 = r(1-p)/p^2$. • The estimate for p is $\hat{p} = \frac{2.98}{12.40-2.98^2} = 0.85$ • The estimate for r is $\hat{r} = \frac{2.98}{12.40-2.98^2} = 16.5$

R code for calculation (see 7.15 under Tag computation)