Chapter 8 - Lecture 1 Basic Properties of Confidence Intervals

Yuan Huang

February 6, 2013

Overview of Chapter 8

It mainly discusses confidence intervals for a population mean for the following situations:
(1) $N(\mu, \sigma)$ with σ known (8.1)
(2) General sample with σ known/unknown under large sample size (8.2)
(3) $N(\mu, \sigma)$ with σ unknown under small sample size (8.3)

Let n denote the sample size.

	σ known	σ unknown
Normal	$8.1 n$ does not matter	8.3 under n is small/large
General	8.2 under n is large	8.2 under n is large

8.1 Case 1: $N(\mu, \sigma)$ with σ known

- From chapter 7 , we know \bar{X} is an estimator for μ.
- To gain the precision, we can report the stand error.
- What's the confidence level? - Use confidence intervals (Cl) for the parameters.
- Cl gives an estimated range of values which is likely to include an unknown population parameter

Definitions

A confidence interval is always calculated by first selecting a confidence level, which is a measure of the degree of reliability of the interval.

- The probability we allow ourselves to be wrong when we are estimating a parameter with a confidence interval, is called significance/critical level and is denoted with α.
- So if $\alpha=0.05$ then $1-0.05=0.95$, so we call our confidence interval a $\mathbf{9 5 \%}$ confidence interval

General strategy to construct Cl for θ

- Parameter θ
- Random sample X_{1}, \ldots, X_{n}
- Need a random variable Y such that

1 Its functional form depends on X_{1}, \ldots, X_{n} and θ. Hence we can denote $Y=h\left(X_{1}, \ldots, X_{n}, \theta\right)$.
2 Its distribution does not depend on θ.

General strategy to construct Cl for θ

If you can find such Y, then based on the distribution of Y, you should be able to write down

$$
P\left(a<h\left(X_{1}, \ldots, X_{n}, \theta\right)<b\right)=1-\alpha
$$

Both a and b do not depend on θ. By transformation, you can derive :

$$
P\left(I\left(X_{1}, \ldots, X_{n}\right)<\theta<u\left(X_{1}, \ldots, X_{n}\right)\right)=1-\alpha
$$

Here, $I\left(X_{1}, \ldots, X_{n}\right)<\theta<u\left(X_{1}, \ldots, X_{n}\right)$ is a random interval. We can plug in the observations to get the $1-\alpha$ confidence interval

$$
I\left(x_{1}, \ldots, x_{n}\right)<\theta<u\left(x_{1}, \ldots, x_{n}\right)
$$

Now let's look at how to apply this general strategy

Assume that you have a random sample $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$

- μ unknown .
- σ known.

Goal: To find confidence intervals for the mean μ.

Construct 95\% confidence interval

- From Chapter 6 , we know that $\bar{X} \sim N\left(\mu,(\sigma / \sqrt{n})^{2}\right)$

$$
\Rightarrow Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

- We also know that the area under the standard normal curve between -1.96 and 1.96 is 0.95

$$
\Rightarrow \quad P\left(-1.96 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq 1.96\right)=0.95
$$

- Manipulate to get the equivalent form $I<\mu<u$.

$$
P\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)=0.95
$$

- Until now, we have a random interval

$$
\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

- After observing $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, we compute the observed sample mean \bar{x} and then substitute into the above random interval in place of \bar{X}, the resulting fixed interval is called $\mathbf{9 5 \%}$ confidence interval for μ.

Definition

For X_{1}, \ldots, X_{n} random sample from $N(\mu, \sigma)$, with σ known, the 95\% confidence interval for μ can be expressed as

$$
\begin{aligned}
& \left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right) \text { is a } 95 \% \mathrm{Cl} \text { for } \mu \\
& \text { or as } \bar{x}-1.96 \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+1.96 \frac{\sigma}{\sqrt{n}} \text { with } 95 \% \text { confidence. }
\end{aligned}
$$

Example 8.2 Assume the preferred height is normally distributed as $N(\mu, \sigma=2)$. A random sample of size $n=31$ is collected. The sample mean is $\bar{x}=80$. What is the resulting 95% confidence interval ?

$$
\begin{aligned}
\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} & =80 \pm 1.96 \frac{2}{\sqrt{31}} \\
& =80 \pm .7 \\
& =(79.3,80.7)
\end{aligned}
$$

Interpretation

How do we interpret a 95% Confidence Interval?

Interpretation

How do we interpret a 95% Confidence Interval?
Attention!!

Interpretation

How do we interpret a 95\% Confidence Interval?
Attention!!

For random interval:

With probability 0.95 , the random interval
$\left(\bar{X}_{n}-1.96 \sigma / \sqrt{n}, \bar{X}_{n}+1.96 \sigma / \sqrt{n}\right)$ will cover the true value μ.

Interpretation

How do we interpret a 95\% Confidence Interval?
Attention!!

For random interval:

With probability 0.95 , the random interval
$\left(\bar{X}_{n}-1.96 \sigma / \sqrt{n}, \bar{X}_{n}+1.96 \sigma / \sqrt{n}\right)$ will cover the true value μ.

For confidence interval:

If the experiment is taken (the random sample is drawn) independently over and over again, about 95% of the intervals derived from this formula will cover the true value μ.

Interpretation

How do we interpret a 95% Confidence Interval?
Attention!!

For random interval:

With probability 0.95 , the random interval
$\left(\bar{X}_{n}-1.96 \sigma / \sqrt{n}, \bar{X}_{n}+1.96 \sigma / \sqrt{n}\right)$ will cover the true value μ.

For confidence interval:

If the experiment is taken (the random sample is drawn) independently over and over again, about 95% of the intervals derived from this formula will cover the true value μ.

Misspecified interpretation: with probability $0.95, \mu$ will take value in the confidence interval.

Confidence interval of other confidence levels

A $100(1-\alpha) \%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$
\left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

where $P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right)=1-\alpha$

Figure 8.4 $P\left(-z_{a / 2} \leq Z \leq z_{a / 2}\right)=1-\alpha$

Figure: Modern Mathematical Statistics with Applications, 2 rd, ${ }_{\underline{D}} 387$

Example 8.2 (revised) Assume the preferred height is normally distributed as $N(\mu, \sigma=2)$. A random sample of size $n=31$ is collected. The sample mean is $\bar{x}=80$. What is the resulting 90% confidence interval ?

For 90% confidence interval, we need to find $z_{0.05}$. By checking table or use R , we can get $z_{0.05}=1.645$.

$$
\begin{aligned}
\bar{x} \pm 1.645 \frac{\sigma}{\sqrt{n}} & =80 \pm 1.645 \frac{2}{\sqrt{31}} \\
& =80 \pm .59 \\
& =(79.41,80.59)
\end{aligned}
$$

- The width of confidence interval

$$
w=2 z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

- Larger confidence levels means more reliable. However, for a given sample size n, the width w is increasing with $z_{\alpha / 2}$.
- Therefore, the gain in reliability entails a loss in precision.
- Solution: calculate the sample size.
- Given the width w_{0}, the sample size that ensures w_{0} is

$$
n=\left(2 z_{\alpha / 2} \frac{\sigma}{w_{0}}\right)^{2}
$$

Sample Size calculation

Example: We want to get a 95% confidence interval for the mean μ of a random sample coming from $N(\mu, \operatorname{var}=4)$. Find the sample size that we need in order to get interval with width 4.

$$
\begin{aligned}
n & =\left(2 z_{\alpha / 2} \frac{\sigma}{w}\right)^{2} \\
& =\left(2 z_{0.025} \frac{2}{4}\right)^{2} \\
& =z_{0.025}^{2} \\
& =1.96^{2} \\
& =3.84
\end{aligned}
$$

