Chapter 8 - Lecture 1 Basic Properties of Confidence Intervals

Yuan Huang

February 6, 2013

Chapter 8 - Lecture 1 Basic Properties of Confidence Intervals

5900

Overview of Chapter 8

It mainly discusses confidence intervals for a population mean for the following situations:

- **1** $N(\mu, \sigma)$ with σ known (8.1)
- 2 General sample with σ known/unknown under large sample size (8.2)
- **3** $N(\mu, \sigma)$ with σ unknown under small sample size (8.3)

Let *n* denote the sample size.

	σ known	σ unknown
Normal	8.1 <i>n</i> does not matter	8.3 under <i>n</i> is small/large
General	8.2 under <i>n</i> is large	8.2 under <i>n</i> is large

8.1 Case 1: $N(\mu, \sigma)$ with σ known

- From chapter 7, we know \bar{X} is an estimator for μ .
- To gain the precision, we can report the stand error.
- What's the confidence level? Use confidence intervals (CI) for the parameters.
- CI gives an estimated range of values which is likely to include an unknown population parameter

Definitions

A confidence interval is always calculated by first selecting a *confidence level*, which is a measure of the degree of reliability of the interval.

• The probability we allow ourselves to be wrong when we are estimating a parameter with a confidence interval, is called **significance/critical level** and is denoted with *α*.

• So if $\alpha = 0.05$ then 1 - 0.05 = 0.95, so we call our confidence interval a **95% confidence interval**

General strategy to construct CI for $\boldsymbol{\theta}$

- Parameter θ
- Random sample X_1, \ldots, X_n
- Need a random variable Y such that
 - 1 Its functional form depends on X_1, \ldots, X_n and θ . Hence we can denote $Y = h(X_1, \ldots, X_n, \theta)$.
 - 2 Its distribution does not depend on θ .

General strategy to construct CI for θ

If you can find such Y, then based on the distribution of Y, you should be able to write down

$$P(a < h(X_1, \dots, X_n, \theta) < b) = 1 - \alpha$$

Both *a* and *b* do not depend on θ . By transformation, you can derive :

$$P(I(X_1,\ldots,X_n) < \theta < u(X_1,\ldots,X_n)) = 1 - \alpha$$

Here, $I(X_1, \ldots, X_n) < \theta < u(X_1, \ldots, X_n)$ is a random interval. We can plug in the observations to get the $1 - \alpha$ confidence interval

$$l(x_1,\ldots,x_n) < \theta < u(x_1,\ldots,x_n)$$

Now let's look at how to apply this general strategy

Assume that you have a random sample $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$

- μ unknown .
- σ known.

Goal: To find confidence intervals for the mean μ .

< ∃ >

95% confidence interval

Construct 95% confidence interval

• From Chapter 6, we know that $ar{X} \sim N(\mu, (\sigma/\sqrt{n})^2)$

$$\Rightarrow Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

- We also know that the area under the standard normal curve between -1.96 and 1.96 is 0.95

$$\Rightarrow$$
 $P(-1.96 \leq rac{ar{X}-\mu}{\sigma/\sqrt{n}} \leq 1.96) = 0.95$

• Manipulate to get the equivalent form $l < \mu < u$.

$$P\left(\bar{X} - 1.96\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96\frac{\sigma}{\sqrt{n}}\right) = 0.95$$

イロト イポト イヨト イヨト

95% confidence interval

- Until now, we have a random interval $\left(\bar{X} 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$
- After observing X₁ = x₁,..., X_n = x_n, we compute the observed sample mean x̄ and then substitute into the above random interval in place of X̄, the resulting fixed interval is called **95% confidence interval for** μ.

Definition

For X_1, \ldots, X_n random sample from $N(\mu, \sigma)$, with σ known, the 95% confidence interval for μ can be expressed as

$$\begin{pmatrix} \bar{x} - 1.96\frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96\frac{\sigma}{\sqrt{n}} \end{pmatrix} \text{ is a 95\% CI for } \mu \\ \text{or as } \bar{x} - 1.96\frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + 1.96\frac{\sigma}{\sqrt{n}} \text{ with 95\% confidence.}$$

э

回下 くほと くほと

Example 8.2 Assume the preferred height is normally distributed as $N(\mu, \sigma = 2)$. A random sample of size n = 31 is collected. The sample mean is $\bar{x} = 80$. What is the resulting 95% confidence interval ?

$$ar{x} \pm 1.96 rac{\sigma}{\sqrt{n}} = 80 \pm 1.96 rac{2}{\sqrt{31}}$$

= $80 \pm .7$
= $(79.3, 80.7)$

프 🖌 🛪 프 🕨

Interpretation

Interpretation

How do we interpret a 95% Confidence Interval?

DQC

프 🖌 🛪 프 🕨

< 🗗 🕨

Interpretation

Interpretation

How do we interpret a 95% Confidence Interval?

Attention!!

590

э

Interpretation

Interpretation

How do we interpret a 95% Confidence Interval?

Attention!!

For random interval:

With probability 0.95, the random interval $(\bar{X}_n - 1.96\sigma/\sqrt{n}, \bar{X}_n + 1.96\sigma/\sqrt{n})$ will cover the true value μ .

< ≣ >

Interpretation

Interpretation

How do we interpret a 95% Confidence Interval?

Attention!!

For random interval:

With probability 0.95, the random interval $(\bar{X}_n - 1.96\sigma/\sqrt{n}, \bar{X}_n + 1.96\sigma/\sqrt{n})$ will cover the true value μ .

For confidence interval:

If the experiment is taken (the random sample is drawn) independently over and over again, about 95% of the intervals derived from this formula will cover the true value μ .

Interpretation

Interpretation

How do we interpret a 95% Confidence Interval?

Attention!!

For random interval:

With probability 0.95, the random interval $(\bar{X}_n - 1.96\sigma/\sqrt{n}, \bar{X}_n + 1.96\sigma/\sqrt{n})$ will cover the true value μ .

For confidence interval:

If the experiment is taken (the random sample is drawn) independently over and over again, about 95% of the intervals derived from this formula will cover the true value μ .

Misspecified interpretation: with probability 0.95, μ will take value in the confidence interval.

→ ∃ →

Confidence interval of other confidence levels

Confidence interval of other confidence levels

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

where $P(-z_{lpha/2} < Z < z_{lpha/2}) = 1 - lpha$

個 と く ヨ と く ヨ と …

Figure 8.4 $P(-z_{a/2} \le Z \le z_{a/2}) = 1 - \alpha$

Figure: Modern Mathematical Statistics with Applications, 2rd, P387

Chapter 8 - Lecture 1 Basic Properties of Confidence Intervals

Confidence interval of other confidence levels

Example 8.2 (revised) Assume the preferred height is normally distributed as $N(\mu, \sigma = 2)$. A random sample of size n = 31 is collected. The sample mean is $\bar{x} = 80$. What is the resulting 90% confidence interval ?

For 90% confidence interval, we need to find $z_{0.05}$. By checking table or use R, we can get $z_{0.05} = 1.645$.

$$\bar{x} \pm 1.645 \frac{\sigma}{\sqrt{n}} = 80 \pm 1.645 \frac{2}{\sqrt{31}} \\ = 80 \pm .59 \\ = (79.41, 80.59)$$

• The width of confidence interval

$$w = 2z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

- Larger confidence levels means more reliable. However, for a given sample size *n*, the width *w* is increasing with $z_{\alpha/2}$.
- Therefore, the gain in reliability entails a loss in precision.
- Solution: calculate the sample size.
- Given the width w_0 , the sample size that ensures w_0 is

$$n = \left(2z_{\alpha/2}\frac{\sigma}{w_0}\right)^2$$

Introduction	
	•
IncloadClio	

Sample Size calculation

Example: We want to get a 95% confidence interval for the mean μ of a random sample coming from $N(\mu, \text{var} = 4)$. Find the sample size that we need in order to get interval with width 4.

$$n = \left(2z_{\alpha/2}\frac{\sigma}{w}\right)^2$$
$$= \left(2z_{0.025}\frac{2}{4}\right)^2$$
$$= z_{0.025}^2$$
$$= 1.96^2$$
$$= 3.84$$