Chapter 8 - Lecture 2 (2) Large-Sample Confidence Intervals for a Population Proportion

Yuan Huang

February 15, 2013
(1) Review: general population with σ^{2} unknown
(2) Cl for proportion: traditional interval
(3) Cl for proportion: score interval

Review

Without normality assumption, when n is large and σ^{2} is unknown, we still get approximate z Cl for the population mean μ.

An approximate $100(1-\alpha) \%$ confidence interval for μ is:

$$
\left(\bar{x}-z_{\alpha / 2} s / \sqrt{n}, \bar{x}+z_{\alpha / 2} s / \sqrt{n}\right)
$$

The above Cl is valid when CLT is valid.

For estimating proportion, each random variable is bernoulli variable, with 1 , if event happens and 0 otherwise. The data we collect will be a sequence of 0 and 1 . The estimator is

$$
\hat{p}=\bar{X}=\frac{\text { Number of nonzero }}{\text { Sample size }}
$$

For the proportion, we know that to apply CLT, we have to check $n p>10, n(1-p)>10$. And then we plug in the $s=\sqrt{\hat{p}(1-\hat{p})}$ to get the traditional interval.

The traditional way of approximate $100(1-\alpha) \%$ confidence interval for p is:

$$
\begin{aligned}
& P\left(-z_{\alpha / 2}<\frac{\bar{X}-\mu}{S / \sqrt{n}}<z_{\alpha / 2}\right) \approx 1-\alpha \\
\rightarrow & \left(\hat{p}-z_{\alpha / 2} s / \sqrt{n}, \hat{p}-z_{\alpha / 2} s / \sqrt{n}\right) \\
\rightarrow & \left(\hat{p}-z_{\alpha / 2} \sqrt{\hat{p}(1-\hat{p})} / \sqrt{n}, \hat{p}-z_{\alpha / 2} \sqrt{\hat{p}(1-\hat{p})} / \sqrt{n}\right)
\end{aligned}
$$

To get the score interval (default in book),

$$
\begin{aligned}
& P\left(-z_{\alpha / 2}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{\alpha / 2}\right) \approx 1-\alpha \\
\rightarrow & P\left(-z_{\alpha / 2}<\frac{\hat{p}-p}{\sqrt{p(1-p)} / \sqrt{n}}<z_{\alpha / 2}\right) \approx 1-\alpha
\end{aligned}
$$

Resolve p will get a (score) interval for a population proportion p with a confidence level approximately $(1-\alpha) \mathrm{Cl}$ is :

$$
\frac{\hat{p}+\frac{z_{\alpha / 2}^{2}}{2 n}}{1+\frac{z_{\alpha / 2}^{2}}{n}} \pm z_{\alpha / 2} \frac{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}+\frac{z_{\alpha / 2}^{2}}{4 n^{2}}}}{1+\frac{z_{\alpha / 2}^{2}}{n}}
$$

Example 8.8

The article "Repeatability and Reproducibility for Pass/Fail Data" (J.Testing Eval., 1997: 151-153) reported that in $n=48$ trials in a particular laboratory, 16 resulted in ignition of a particular type of substrate by a lighted cigarette. Let p denote the long-run proportion of all such trials that would result in ignition. A point estimate for p is $\hat{p}=16 / 48=.333$. A confidence interval for p with a confidence level of approximately 95% is

$$
\begin{array}{r}
\frac{.333+1.96^{2} / 96}{1+1.96^{2} / 48} \pm 1.96 \frac{\sqrt{(.333)(.667) / 48+1.96^{2} /\left(4 \cdot 48^{2}\right)}}{1+1.96^{2} / 48} \\
=.346 \pm .129=(.217, .475)
\end{array}
$$

The traditional interval is

$$
.333 \pm 1.96 \sqrt{(.333)(.667) / 48}=.333 \pm .133=(.200, .466)
$$

These two intervals would be in much closer agreement were the sample size substantially larger.

Figure: Modern Mathematical Statistics with Applications, 2rd, P397

