Chapter 8 - Lecture 3

Intervals Based on a Normal Populations Distribution

Yuan Huang

February 18, 2013
(1) Normal population with known variance
(2) Normal population with unknown variance

Large Samples
Small Samples

Review

- Let a random sample $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ where σ^{2} is known. We are interested in constructing a $(1-\alpha)$ Confidence Interval for μ.
- We have seen this last lecture:

$$
\left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

Interval estimation for Normal with unknown variance

- Let a random sample $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ where σ^{2} is unknown. We are interested in constructing a $(1-\alpha)$ Confidence Interval for μ.
- How should we do this? There are two different cases:
- Case 1: large sample: $n>30$
- Case 2: small sample: $n<30$

Sample size greater than 30

- What do you think the best thing to do if sample size is greater then 30 ?

Sample size greater than 30

- What do you think the best thing to do if sample size is greater then 30 ?

For large sample size, we can apply the conclusion for general distribution with unknown variance, and get the approximate Cl .

$$
\left(\bar{x}-z_{\alpha / 2} s / \sqrt{n}, \quad \bar{x}+z_{\alpha / 2} s / \sqrt{n}\right)
$$

Sample size less than or equal to 30

- What do you think is the best thing to do if sample size is smaller than 30 ?

Sample size less than or equal to 30

- What do you think is the best thing to do if sample size is smaller than 30 ?

Proposition

If X_{1}, \ldots, X_{n} are i.i.d with $X_{1} \sim N\left(\mu, \sigma^{2}\right)$, then

$$
\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1} .
$$

Normal with unknown variance under small sample size

Under X_{1}, \ldots, X_{n} i.i.d $\sim N\left(\mu, \sigma^{2}\right), \sigma^{2}$ unknown. $\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}$;
$\rightarrow P\left(-t_{\alpha / 2, n-1}<\frac{\bar{X}-\mu}{S / \sqrt{n}}<t_{\alpha / 2, n-1}\right)=1-\alpha$
$\rightarrow P\left(\bar{X}-t_{\alpha / 2, n-1} S / \sqrt{n}<\mu<\bar{X}+t_{\alpha / 2, n-1} S / \sqrt{n}\right)=1-\alpha$

Proposition

Exact $1-\alpha$ CI for μ for Normal with unknown variance under small sample size is

$$
\left(\bar{x}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \quad \bar{x}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right)
$$

Example 8.11

There are alcohol percentages for a sample of 16 beers:
$4.68,4.13,4.80,4.63,5.08,5.79,6.29,6.79$,
4.93, 4.25, 5.70, 4.74, 5.88, 6.77, 6.04, 4.95

Assume the percentage is normally distributed. Construct the 95% for the mean percentage.

Example 8.11

There are alcohol percentages for a sample of 16 beers:
$4.68,4.13,4.80,4.63,5.08,5.79,6.29,6.79$,
4.93, 4.25, 5.70, 4.74, 5.88, 6.77, 6.04, 4.95

Assume the percentage is normally distributed. Construct the 95% for the mean percentage.

- $n=16<30$
- $\bar{X}=\sum_{i=1}^{n} \rightarrow \bar{x}=5.34$
- $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \rightarrow s=0.8483$
- $t_{\alpha / 2, n-1}=t_{0.05 / 2,16-1}=t_{0.025,15}=2.131$
- $95 \% \mathrm{Cl}$ is $\left(\bar{x}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \quad \bar{x}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right)=$ $\left(5.34-2.131 \frac{0.8483}{\sqrt{16}}, \quad 5.34+2.131 \frac{0.8483}{\sqrt{16}}\right)=(4.89,5.79)$

