Outline	Introduction	large sample test for one sample proportion o o	Small sample test for one sample proportion oo ooo

Chapter 9 - Lecture 3 Tests Concerning a Population Proportion

Yuan Huang

Mar 11, 2013

Chapter 9 - Lecture 3 Tests Concerning a Population Proportion

Yuan Huang

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion
			00
		00	
			000

1 Introduction

2 large sample test for one sample proportion Testing procedure

Problem 9.38 Type II error

 Small sample test for one sample proportion Testing procedure Type II error Example 9.13

Outline	Introduction	large sample test for one sample proportion O O O	Small sample test for one sample proportion 00 000

Introduction

Let p denote the proportion of individual or objects in a population who possess a specified property ("success"). Let X denote the number of success within a sample of size n, then $X \sim N(n, p)$.

For doing the test about *p*, there are two cases:

- When *n* is small, the tests will be based on Binomial distribution.
- When n is large, the tests can be derived by applying the central limit theorem. Therefore, it's special case of approximate z tests.

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion	
			00	
		00		
			000	
Testing pro	ocedure			

Large sample test for one sample proportion

• Null Hypothesis: $H_0: p = p_0$

• Test statistic value:
$$z = rac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}$$

- Rejection Regions:
 - If $H_A: p > p_0, z \ge z_\alpha$
 - If $H_A: p < p_0, z \leq -z_\alpha$
 - If $H_A: p \neq p_0$, $z \leq -z_{\alpha/2}$ and $z \geq z_{\alpha/2}$
- There are two conditions that we need to check, so that the use of this test is valid. We need:

•
$$np_0 \ge 10$$

• $n(1-p_0) \ge 10$

Outline	Introduction	large sample test for one sample proportion ○ ●○	Small sample test for one sample proportion
Problem 9.3	8	0	

Problem 9.38

A random sample of 150 recent donations at a blood bank reveals that 82 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%. Carry out a test of the appropriate hypotheses using a significance level of 0.01.

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion
		0	00
		0	000
Problem 9.	38		

Problem 9.38(cont.)

Solution: first check the conditions: $np_0 = 150 \times 0.4 = 60, n(1 - p_0) = 150 \times 0.6 = 90$

- Step 1: The hypotheses: $H_0: p = 0.4$ vs $H_1: p \neq 0.4$, where p is proportion of type A donations in the population.
- Step 2: Test statistics value $z = \frac{\hat{p} p_0}{\sqrt{p_0(1 p_0)/n}} = \frac{\frac{82}{150} 0.4}{\sqrt{0.4(1 0.4)/n}} = 3.67$
- Step 3: The corresponding null distribution for Z is N(0, 1).
- Step 4 Select the significant level α , The rejection region is of the form $z \leq -z_{\alpha/2}$ and $z \geq z_{\alpha/2}$ where for $\alpha = 0.01$, $z_{\alpha/2} = 2.58$.
- step 5: Since 3.67 > 2.58, we have significant evidence to reject H_0 and say that the percentage of type A donations is not 40% under significance level 0.01

・ 同下 ・ ヨト ・ ヨト

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion 00 000
Type II erro)r		

Calculating Type II error (given true p = p') 1 If $H_A : p > p_0$

$$\beta(p') = P\left(z < \frac{p_0 - p' + z_\alpha \sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$$

2 If $H_A : p < p_0$

$$\beta(p') = 1 - P\left(z < \frac{p_0 - p' - z_\alpha \sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$$

3 If $H_A : p \neq p_0$,

$$\beta(p') = P\left(z < \frac{p_0 - p' + z_{\alpha/2}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right) - P\left(z < \frac{p_0 - p' - z_{\alpha/2}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$$

Chapter 9 - Lecture 3 Tests Concerning a Population Proportion

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion	
			0	
		00		
			000	
Testing pro	ocedure			

Small sample test for one sample proportion

The procedure when the sample size n is small are based directly on the binomial distribution rather than the normal approximation. In the small sample case, consider only one-sided tests.

- The book gives the case when the alternative is $H_{\alpha}: p > p_0$. Therefore, I will give detail procedures here for alternative $H_{\alpha}: p < p_0$.
- Review of Binomial Distribution
 - 1 If $X \sim \text{Binomial}(n, p)$, E(X) = np and V(X) = np(1-p)2 $P(X = x | X \sim \text{Binomial}(n, p)) = \binom{n}{x} p^x (1-p)^{(n-x)}$ 3 Notation: $B(x, n, p) \doteq P(X \le x | X \sim \text{Binomial}(n, p))$

向下 イヨト イヨト

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion ○ ○ ○
Testing pro	cedure		

one-sided test for one sample proportion with H_{α} : $p < p_0$

- Step 1: The hypotheses: $H_0: p = p_0$ vs $H_1: p < p_0$.
- Step 2: Test statistics X, the number of success events.
- Step 3: The corresponding null distribution for X. Under H_0 , $X \sim \text{Binomial}(n, p_0)$.
- Step 4 Select the significant level α , The rejection region is of the form $\{x : x \leq c\}$. The critical value c satisfies that $B(c, n, p_0) < \alpha$ and $B((c + 1), n, p_0) > \alpha$. (Hence this is not exact α test.) Hence c = 15 and the rejection region is $\{x \leq 15\}$.

step 5: Based on the observation x to make the decision.

Outline	Introduction	large sample test for one sample proportion O O	Small sample test for one sample proportion o • • • • •
Type II erro	r		

one-sided test for one sample proportion with H_{α} : $p < p_0$ (cont.)

Type II error

If the true value of p is $p' < p_0$, then the type II error is calculated as

$$\begin{array}{lll} \beta(p') &=& P[H_0 \text{ is not rejected when } X \sim \text{Binomial}(n,p')] \\ &=& P[X \geq (c+1) \text{when } X \sim \text{Binomial}(n,p')] \\ &=& 1 - B(c;n,p') \end{array}$$

Note: R command pbinom(x,n,p).

Outline	Introduction	large sample test for one sample proportion O OO O	Small sample test for one sample proportion o o o o o
Example 9.1	.3		

Example 9.13

A plastic manufacturer has developed a new type of plastic trash can and proposes to sell them with an unconditional 6-year warranty. To see weather this is economically feasible, 20 prototype cans are subjected to an accelerated life test to simulate 6 years of use. The proposed warranty will be modified only if the sample data strongly suggests that fewer than 90% of such cans would survive the 6-year period.

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion
			00
		00	
			000
Example 9.	.13		

Example 9.13 (cont.)

- Step 1: The hypotheses: $H_0: p = 0.9$ vs $H_a: p < 0.9$.
- Step 2: Test statistics X, the number among the 20 that survive.
- Step 3: The corresponding null distribution for X. Under H_0 , $X \sim \text{Binomial}(20, 0.9)$.
- Step 4 Let the significant level $\alpha = 0.05$, Then the critical value c satisfies that B(c, 20, 0.9) < 0.05. $B(c, n, p) \doteq P(X \le c | X \sim \text{Binomial}(n, p))$. Given **1** B(15, 20,0.9) = 0.043 **2** B(16, 20,0.9) = 0.133

Hence c = 15 and the rejection region is $\{x \le 15\}$.

step 5: If x = 14, then H_0 would be rejected, and the data favors p < 0.9 at the significance level 0.05.

個 と く ヨ と く ヨ と …

Outline	Introduction	large sample test for one sample proportion	Small sample test for one sample proportion
			00
		00	
			000
Example 9.1	13		

Example 9.13 (cont.)

Type II error

If the true value of p is p' = 0.8, then the type II error is calculated as

Note: R command pbinom(15,20,0.8).