Chapter 9 - Lecture 3
 Tests Concerning a Population Proportion

Yuan Huang

Mar 11, 2013
(1) Introduction
(2) large sample test for one sample proportion

Testing procedure
Problem 9.38
Type II error
(3) Small sample test for one sample proportion

Testing procedure
Type II error
Example 9.13

Introduction

Let p denote the proportion of individual or objects in a population who possess a specified property ("success"). Let X denote the number of success within a sample of size n, then $X \sim N(n, p)$.

For doing the test about p, there are two cases:
(1) When n is small, the tests will be based on Binomial distribution.
(2) When n is large, the tests can be derived by applying the central limit theorem. Therefore, it's special case of approximate z tests.

Large sample test for one sample proportion

- Null Hypothesis: $H_{0}: p=p_{0}$
- Test statistic value: $z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}$
- Rejection Regions:
- If $H_{A}: p>p_{0}, z \geq z_{\alpha}$
- If $H_{A}: p<p_{0}, z \leq-z_{\alpha}$
- If $H_{A}: p \neq p_{0}, z \leq-z_{\alpha / 2}$ and $z \geq z_{\alpha / 2}$
- There are two conditions that we need to check, so that the use of this test is valid. We need:
- $n p_{0} \geq 10$
- $n\left(1-p_{0}\right) \geq 10$

Problem 9.38

A random sample of 150 recent donations at a blood bank reveals that 82 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%. Carry out a test of the appropriate hypotheses using a significance level of 0.01 .

Problem 9.38(cont.)

Solution: first check the conditions:

$$
n p_{0}=150 \times 0.4=60, n\left(1-p_{0}\right)=150 \times 0.6=90
$$

Step 1: The hypotheses: $H_{0}: p=0.4$ vs $H_{1}: p \neq 0.4$, where p is proportion of type A donations in the population.
Step 2: Test statistics value $z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}=\frac{\frac{82}{150}-0.4}{\sqrt{0.4(1-0.4) / n}}=3.67$
Step 3: The corresponding null distribution for Z is $N(0,1)$.
Step 4 Select the significant level α, The rejection region is of the form $z \leq-z_{\alpha / 2}$ and $z \geq z_{\alpha / 2}$ where for $\alpha=0.01$, $z_{\alpha / 2}=2.58$.
step 5: Since $3.67>2.58$, we have significant evidence to reject H_{0} and say that the percentage of type A donations is not 40% under significance level 0.01

Calculating Type II error (given true $p=p^{\prime}$)

(1) If $H_{A}: p>p_{0}$

$$
\beta\left(p^{\prime}\right)=P\left(z<\frac{p_{0}-p^{\prime}+z_{\alpha} \sqrt{p_{0}\left(1-p_{0}\right) / n}}{\sqrt{p^{\prime}\left(1-p^{\prime}\right) / n}}\right)
$$

(2) If $H_{A}: p<p_{0}$

$$
\beta\left(p^{\prime}\right)=1-P\left(z<\frac{p_{0}-p^{\prime}-z_{\alpha} \sqrt{p_{0}\left(1-p_{0}\right) / n}}{\sqrt{p^{\prime}\left(1-p^{\prime}\right) / n}}\right)
$$

(3) If $H_{A}: p \neq p_{0}$,

$$
\begin{aligned}
\beta\left(p^{\prime}\right)= & P\left(z<\frac{p_{0}-p^{\prime}+z_{\alpha / 2} \sqrt{p_{0}\left(1-p_{0}\right) / n}}{\sqrt{p^{\prime}\left(1-p^{\prime}\right) / n}}\right) \\
& -P\left(z<\frac{p_{0}-p^{\prime}-z_{\alpha / 2} \sqrt{p_{0}\left(1-p_{0}\right) / n}}{\sqrt{p^{\prime}\left(1-p^{\prime}\right) / n}}\right)
\end{aligned}
$$

Small sample test for one sample proportion

The procedure when the sample size n is small are based directly on the binomial distribution rather than the normal approximation. In the small sample case, consider only one-sided tests.

- The book gives the case when the alternative is $H_{\alpha}: p>p_{0}$. Therefore, I will give detail procedures here for alternative $H_{\alpha}: p<p_{0}$.
- Review of Binomial Distribution
(1) If $X \sim \operatorname{Binomial}(n, p), E(X)=n p$ and $V(X)=n p(1-p)$
(2) $P(X=x \mid X \sim \operatorname{Binomial}(n, p))=\binom{n}{x} p^{x}(1-p)^{(n-x)}$
(3) Notation: $B(x, n, p) \doteq P(X \leq x \mid X \sim \operatorname{Binomial}(n, p))$
one-sided test for one sample proportion with $H_{\alpha}: p<p_{0}$

Step 1: The hypotheses: $H_{0}: p=p_{0}$ vs $H_{1}: p<p_{0}$.
Step 2: Test statistics X, the number of success events.
Step 3: The corresponding null distribution for X. Under H_{0}, $X \sim \operatorname{Binomial}\left(n, p_{0}\right)$.
Step 4 Select the significant level α, The rejection region is of the form $\{x: x \leq c\}$. The critical value c satisfies that $B\left(c, n, p_{0}\right)<\alpha$ and $B\left((c+1), n, p_{0}\right)>\alpha$. (Hence this is not exact α test.) Hence $c=15$ and the rejection region is $\{x \leq 15\}$.
step 5: Based on the observation x to make the decision.
one-sided test for one sample proportion with $H_{\alpha}: p<p_{0}$ (cont.)

Type II error

If the true value of p is $p^{\prime}<p_{0}$, then the type II error is calculated as

$$
\begin{aligned}
\beta\left(p^{\prime}\right) & =P\left[H_{0} \text { is not rejected when } X \sim \operatorname{Binomial}\left(n, p^{\prime}\right)\right] \\
& =P\left[X \geq(c+1) \text { when } X \sim \operatorname{Binomial}\left(n, p^{\prime}\right)\right] \\
& =1-B\left(c ; n, p^{\prime}\right)
\end{aligned}
$$

Note: R command pbinom (x, n, p).

Example 9.13

A plastic manufacturer has developed a new type of plastic trash can and proposes to sell them with an unconditional 6 -year warranty. To see weather this is economically feasible, 20 prototype cans are subjected to an accelerated life test to simulate 6 years of use. The proposed warranty will be modified only if the sample data strongly suggests that fewer than 90% of such cans would survive the 6 -year period.

Example 9.13 (cont.)

Step 1: The hypotheses: $H_{0}: p=0.9$ vs $H_{a}: p<0.9$.
Step 2: Test statistics X, the number among the 20 that survive.
Step 3: The corresponding null distribution for X. Under H_{0}, $X \sim \operatorname{Binomial}(20,0.9)$.
Step 4 Let the significant level $\alpha=0.05$, Then the critical value c satisfies that $B(c, 20,0.9)<0.05$. $B(c, n, p) \doteq P(X \leq c \mid X \sim \operatorname{Binomial}(n, p))$. Given
(1) $\mathrm{B}(15,20,0.9)=0.043$
(2) $\mathrm{B}(16,20,0.9)=0.133$

Hence $c=15$ and the rejection region is $\{x \leq 15\}$.
step 5: If $x=14$, then H_{0} would be rejected, and the data favors $p<0.9$ at the significance level 0.05 .

Example 9.13 (cont.)

Type II error

If the true value of p is $p^{\prime}=0.8$, then the type II error is calculated as

$$
\begin{aligned}
\beta(0.8) & =P\left[H_{0} \text { is not rejected when } X \sim \operatorname{Binomial}(20,0.8)\right] \\
& =P[X \geq 16 w h e n ~ X \sim \operatorname{Binomial}(20,0.8)] \\
& =1-B(15 ; 20,0.8)=1-0.37=0.63
\end{aligned}
$$

Note: R command pbinom $(15,20,0.8)$.

