Math/Stat319 for chapter 12 : Simple Linear regression

- Observations: $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ where x is the explanatory/indepedent variable and the y is the response variable/dependent variable.
- Assumption: (1) Linearity; (2) error terms are independent; (3) error terms are normally distributed; (4) error terms have mean 0 ; (5) error terms have constant variance.
- Model: $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right) \leftrightarrow Y_{i} \sim N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)$.
- Estimation for $\beta \mathrm{s}$, by LSE (least square estimation) or MLE (maximum likelihood estimation)

$$
\begin{aligned}
& b_{0}=\hat{\beta}_{0}=\bar{y}-\bar{x} b_{1} \\
& b_{1}=\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}=\frac{S_{x y}}{S_{x x}}
\end{aligned}
$$

Therefore, the estimated regression line is $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$. We call $e_{i}=y_{i}-\hat{y}_{i}$ the residuals.

- Interpretation: β_{1} is the slope parameter, which is interpreted as the expected or true average increase in Y associated with a 1-unit increase in $x . \beta_{0}$ is the intercept, which is interpreted as the expected or true average value of Y when $x=0 . \hat{\beta}_{1}$: the estimated expected change associated with 1-unit increase in x is $\hat{\beta}_{1}$. OR 1-unit increase in x results in an $\hat{\beta}_{1}$ increase/decrease of Y in average.
- Estimating σ^{2}. The least square estimator of σ^{2} is

$$
\hat{\sigma}^{2}=s^{2}=\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}
$$

- Regression and ANOVA

Table 1: ANOVA table for simple linear regression

Source of variation	df	Sum of Squares	Mean Square	f
Regression	1	$S S R=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$	$S S R$	$\overline{S S R}$
Error	$n-2$	$S S E=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$	$M S E=s^{2}=\frac{S S E}{n-2}$	
Total	$n-1$	$S S T=\sum\left(y_{i}-\bar{y}\right)^{2}$		

Now you should be able to :

- Calculate the Coefficient of Determination $r^{2}=1-\frac{S S E}{S S T}$
- Perform the F test for the model fitting. Since we only have 1 slope β_{1}, the F test should give you exactly the same result as the t test for $H_{0}: \beta_{1}=0, H_{1}: \beta_{1} \neq 0$. By exactly, I mean the same p-value and of course the same result. The rejection region for the F test is $\left\{f \geq F_{\alpha, 1, n-2}\right\}$
- Inference of β_{1}.
- $\hat{\beta}_{1} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}=\frac{\sigma^{2}}{S_{x x}}\right)$
- The estimated standard deviation of $\hat{\beta}_{1}: s_{\hat{\beta}_{1}}=\hat{\sigma}_{\hat{\beta}_{1}}=\frac{s}{\sqrt{S_{x x}}}$
- $T=\frac{\hat{\beta}_{1}-\beta_{1}}{S_{\hat{\beta}_{1}}} \sim t_{n-2}$
- Testing hypothesis:
* Null hypothesis: $H_{o}: \beta_{1}=c$
* Test statistics : $Z=\frac{\hat{\beta}_{1}-c}{S_{\hat{\beta}_{1}}} \sim t_{n-2}$
* Rejection Region:

1. For $H_{1}: \beta_{1}>c$, we reject H_{o} when $t>t_{\alpha, n-2}$;
2. For $H_{1}: \beta_{1}<c$, we reject H_{o} when $t<-t_{\alpha, n-2}$;
3. For $H_{1}: \beta_{1} \neq c$, we reject H_{o} when $|t|>t_{\alpha / 2, n-2}$.

- A typical computer output for regression analysis:

Figure 1: Minitab output (Fig 12.14 from book)

