- Observations: $(x_1, y_1), \ldots, (x_n, y_n)$ where x is the explanatory/indepedent variable and the y is the response variable/dependent variable.
- Assumption: (1) Linearity; (2) error terms are independent; (3) error terms are normally distributed; (4) error terms have mean 0; (5) error terms have constant variance.
- Model: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2) \leftrightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2).$
- Estimation for β s, by LSE (least square estimation) or MLE (maximum likelihood estimation)

$$b_{0} = \beta_{0} = \bar{y} - \bar{x}b_{1}$$

$$b_{1} = \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i}y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}} = \frac{S_{xy}}{S_{xx}}$$

Therefore, the estimated regression line is $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. We call $e_i = y_i - \hat{y}_i$ the residuals.

- Interpretation: β_1 is the slope parameter, which is interpreted as the expected or true average increase in Y associated with a 1-unit increase in x. β_0 is the intercept, which is interpreted as the expected or true average value of Y when x = 0. $\hat{\beta}_1$: the estimated expected change associated with 1-unit increase in x is $\hat{\beta}_1$. OR 1-unit increase in x results in an $\hat{\beta}_1$ increase/decrease of Y in average.
- Estimating σ^2 . The least square estimator of σ^2 is

$$\hat{\sigma}^2 = s^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n - 2}$$

• Regression and ANOVA

Table 1: ANOVA table for simple linear regression							
Source of variation	df	Sum of Squares	Mean Square	f			
Regression	1	$SSR = \sum (\hat{y}_i - \bar{y})^2$	SSR	$\frac{SSR}{SSE/(n-2)}$			
Error	n-2	$SSE = \sum (y_i - \hat{y}_i)^2$	$MSE = s^2 = \frac{SSE}{n-2}$				
Total	n-1	$SST = \sum (y_i - \bar{y})^2$					

Now you should be able to :

- Calculate the Coefficient of Determination $r^2 = 1 \frac{SSE}{SST}$
- Perform the F test for the model fitting. Since we only have 1 slope β_1 , the F test should give you exactly the same result as the t test for $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$. By exactly, I mean the same p-value and of course the same result. The rejection region for the F test is $\{f \geq F_{\alpha,1,n-2}\}$

- Inference of β_1 .
 - $\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2 = \frac{\sigma^2}{S_{xx}})$
 - The estimated standard deviation of $\hat{\beta}_1$: $s_{\hat{\beta}_1} = \hat{\sigma}_{\hat{\beta}_1} = \frac{s}{\sqrt{S_{xx}}}$
 - $T = \frac{\hat{\beta}_1 \beta_1}{S_{\hat{\beta}_1}} \sim t_{n-2}$
 - Testing hypothesis:
 - * Null hypothesis: $H_o: \beta_1 = c$
 - * Test statistics : $Z = \frac{\hat{\beta}_1 c}{S_{\hat{\beta}_1}} \sim t_{n-2}$
 - * Rejection Region:
 - 1. For $H_1: \beta_1 > c$, we reject H_o when $t > t_{\alpha,n-2}$;
 - 2. For $H_1: \beta_1 < c$, we reject H_o when $t < -t_{\alpha,n-2}$;
 - 3. For $H_1: \beta_1 \neq c$, we reject H_o when $|t| > t_{\alpha/2, n-2}$.
 - A typical computer output for regression analysis:

The regression e Kg = -2.35 + 0	equation .00845 (n is CO2							
Predictor	Coef		SE Coef	Т	P				
Constant CO2	-2.349 0.008	$\hat{\boldsymbol{\beta}}_{3} \leftarrow \hat{\boldsymbol{\beta}}_{0}$ $\hat{\boldsymbol{\beta}}_{4} \leq 4 \leftarrow \hat{\boldsymbol{\beta}}_{1}$	0.7966 0.001261	-2.95 6.70	0.026 0.001				
S = 0.533964	R-Sq =	88.2% ← 100 r ²	R-Sq(ad	j) = 86.3%					
Analysis of Variance									
Source Regression Residual Error Total	DF 1 6 7	SS 12.808 1.711 ←SSI 14.519 ←SS	MS 12.808 E 0.285 F	F 44.92	P 0.001				

Figure 1: Minitab output (Fig 12.14 from book)