General

• The Procedure of Hypotheses Testing, Please specify the five steps explicitly.

Step 1: State the hypotheses. Rules:

- (a) H_0 : Status quo, or no relationship, or no difference. In most situations, the researcher hopes to disprove or reject the null hypothesis. "=" always goes with H_0
- (b) H_1 : The assumed status quo is false, or that there is a relationship, or that there is a difference. In most situations, this hypothesis is what the researcher hopes to prove. Never use "=" or " \leq ", " \geq ". H_0 and H_1 should be contradicting.
- Step 2: Select test statistics $T(X_1, \ldots, X_n)$
- Step 3: Get its corresponding null distribution for T. That is the distribution of T under H_0
- Step 4: Determine the rejection/critical region C (or calculate the p-value)
- Step 5: Make a decision : If the sample value of T does fall in reject region C, we reject H_0 ; otherwise we fail to reject H_0 . Statements:
 - If reject H_0 , "There is evidence / The data supports that (plug in H_1) at the significance level α "
 - If fail to reject H₀, "There is not enough evidence to reject the null that (plug in H₀) at the significance level α "
- Type I error = $P(\text{Reject } H_0 | H_0 \text{ is true})$
- Type II error = $P(\text{Fail to reject } H_0|H_0 \text{ is false})$

Tests about population Mean

- 1. Case I: Normal population with known σ
 - Null hypothesis: $H_0: \mu = \mu_0$
 - Test statistics value: $z = \frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}$

H_1	Rejection Region for level α	Type II error $\beta(\mu')$
$H_1: \mu > \mu_0$	$z \ge z_{\alpha}$	$\Phi(z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}})$
$H_1: \mu < \mu_0$	$z \leq -z_{\alpha}$	1- $\Phi(-z_{\alpha}+\frac{\mu_{0}-\mu'}{\sigma/\sqrt{n}})$
$H_1: \mu \neq \mu_0$	$z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$	$\Phi(z_{\alpha/2} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}) - \Phi(-z_{\alpha/2} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}})$

- 2. Case II: population with unknown σ and sample size n>40
 - Null hypothesis: $H_0: \mu = \mu_0$
 - Test statistics value: $z = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$

H_1	Rejection Region for level α	Type II error $\beta(\mu')$
$H_1: \mu > \mu_0$	$z \ge z_{\alpha}$	$\Phi(z_{\alpha} + \frac{\mu_0 - \mu'}{s/\sqrt{n}})$
$H_1: \mu < \mu_0$	$z \leq -z_{\alpha}$	1- $\Phi(-z_{\alpha} + \frac{\mu_0 - \mu'}{s/\sqrt{n}})$
$H_1: \mu \neq \mu_0$	$z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$	$\left \Phi(z_{\alpha/2} + \frac{\mu_0 - \mu'}{s/\sqrt{n}}) - \Phi(-z_{\alpha/2} + \frac{\mu_0 - \mu'}{s/\sqrt{n}}) \right $

- 3. Case III: population with unknown σ and sample size $n \leq 40$
 - Null hypothesis: $H_0: \mu = \mu_0$
 - Test statistics value: $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$

H_1	Rejection Region for level α
$H_1: \mu > \mu_0$	$t \ge t_{\alpha, n-1}$
$H_1: \mu < \mu_0$	
$H_1: \mu \neq \mu_0$	$t \ge t_{\alpha/2,,n-1}$ or $t \le -t_{\alpha/2,n-1}$

Tests Concerning a Population Proportion

- 1. Large sample test for one sample proportion.
 - Conditions: $np_0 \ge 10$ AND $n(1-p_0) \ge 10$
 - Null Hypothesis: $H_0: p = p_0$
 - Test statistic value: $z = \frac{\hat{p} p_0}{\sqrt{p_0(1 p_0)/n}}$

H_1	Rejection Region for level α	Type II error $\beta(\mu')$
$H_1: p > p_0$	$z \ge z_{\alpha}$	$\beta(p') = P\left(z < \frac{p_0 - p' + z_\alpha \sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$
$H_1: p < p_0$	$z \leq -z_{\alpha}$	$\beta(p') = 1 - P\left(z < \frac{p_0 - p' - z_\alpha \sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$
$H_1: p \neq p_0$	$z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$	$\beta(p') = P\left(z < \frac{p_0 - p' + z_{\alpha/2}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$
		$-P\left(z < \frac{p_0 - p' - z_{\alpha/2}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p'(1 - p')/n}}\right)$

2. Small sample test for one sample proportion. (One sided only)

Notation: $B(x, n, p) \doteq P(X \le x | X \sim \text{Binomial}(n, p))$

- $H_0: p = p_0$
- Test statistics X, the number of success events.
- The corresponding null distribution for X: under H_0 , $X \sim \text{Binomial}(n, p_0)$.

- (a) $H_1 : p < p_0 :$
 - Rejection region: of the form $\{x : x \leq c\}$. The critical value c satisfies that $B(c, n, p_0) \leq \alpha$ and $B((c+1), n, p_0) > \alpha$.
 - Type II error: If the true value of p is $p' < p_0$, then the type II error is

$$\beta(p') = P[\text{Fail to reject } H_0 \text{ when } X \sim \text{Binomial}(n, p')]$$
$$= P[X \ge (c+1) \text{ when } X \sim \text{Binomial}(n, p')]$$
$$= 1 - B(c; n, p')$$

- (b) $H_1: p > p_0$
 - Rejection region: of the form $\{x : x \ge c\}$. The critical value c satisfies that $1 B((c-1), n, p_0) \le \alpha$ and $1 B(c, n, p_0) > \alpha$.
 - Type II error: If the true value of p is $p' > p_0$, then the type II error is

$$\beta(p') = P[\text{Fail to reject } H_0 \text{ when } X \sim \text{Binomial}(n, p')]$$
$$= P[X < c \text{ when } X \sim \text{Binomial}(n, p')]$$
$$= B((c-1); n, p')$$

P-values

- Definition: **P-value** is the probability, of obtaining a test statistic at least as contradictory to the null hypothesis as the one we have calculated from the available sample, assuming the null hypothesis is true.
- Decision based on p-values:
 - If p-value $\leq \alpha$ we reject H_0
 - If p-value > α we do not reject H_0
- p-value calculation: Suppose the test statistic is Z (or T), and the corresponding value in the sample is z (or t). Then the p-value is
 - 1. Two-sided test $H_1: \mu \neq \mu_0: P(|Z| > z), P(|T| > t);$
 - 2. Upper-tailed test $H_1: \mu > \mu_0: P(Z > z)$, P(T > t);
 - 3. Lower-tailed test $H_1: \mu < \mu_0: \ P(Z < z) \ , \ P(T < t).$